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Security assessment of public-key cryptography

Most-widely used public-key cryptosystem: RSA
Integer factorization problem (n = pg with p ~ q)
Factoring RSA-like numbers: Number Field Sieve (NFS)
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primality testing
trial division
p—1, QS
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~ 1/3 of the run-time for RSA-768 [CRYPTO’10]
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Security assessment of public-key cryptography

Most-widely used public-key cryptosystem: RSA
Integer factorization problem (n = pg with p =~ q)
Factoring RSA-like numbers: Number Field Sieve (NFS)

Inside NFS factor many small numbers: cofactorization

primality testing
trial division

p—1,QS ~ 1/3 of the run-time for RSA-768 [CRYPTO’10]
ECM
———

Offloading this work (to FPGA, GPU) is an active research area,
since faster cofactorization — faster NFS

A. K. Lenstra and H. W. Lenstra, Jr. The Development of the Number Field Sieve, Lecture Notes in Mathematics, 1993
H. W. Lenstra Jr. Factoring integers with elliptic curves. Annals of Mathematics, 1987.



Elliptic Curve Method (ECM)

Try and factor n = p- g with 1 < p < g < n. Repeat:

@ Pick a random point P and construct an elliptic E over Z/nZ
containing P

o Compute Q = kP € E(Z/nZ) for some k € Z

o If #E(F,) | k (and #E(Z/qZ) 1 k) then Q and the neutral element
become the same modulo p

e p=gcd(n Q)
In practice given a bound B; € Z: k =1lcm(1,2,...,B;)

H. W. Lenstra Jr. Factoring integers with elliptic curves. Annals of Mathematics, 1987.
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Elliptic Curve Method (ECM)

Try and factor n = p- g with 1 < p < g < n. Repeat:

@ Pick a random point P and construct an elliptic E over Z/nZ
containing P

o Compute Q = kP € E(Z/nZ) for some k € Z

o If #E(F,) | k (and #E(Z/qZ) 1 k) then Q and the neutral element
become the same modulo p

e p=gcd(n Q)
In practice given a bound B; € Z: k =1lcm(1,2,...,B;)

O(elV2+o(L)(VIEPToE o P) j 10g n)) )

o M(log n) represents the complexity of multiplication modulo n
@ o(1) is for p — o0

H. W. Lenstra Jr. Factoring integers with elliptic curves. Annals of Mathematics, 1987.



Edwards Curves (based on work by Euler & Gauss)

o Edwards curves

@ Twisted Edwards curves

@ Inverted Edwards coordinates

o Extended twisted Edwards coordinates

A twisted Edwards curve is defined (ad(a — d) # 0)

ax?+y? =1+dx%y? and (ax?+ y?)z? = z* + dx?y?

2007: H. M. Edwards. A normal form for elliptic curves. Bulletin of the American Mathematical Society
2007: D. J. Bernstein and T. Lange. Faster addition and doubling on elliptic curves. Asiacrypt
2008: H. Hisil, K. K.-H. Wong, G. Carter, and E. Dawson. Twisted Edwards curves revisited. Asiacrypt



Edwards Curves (based on work by Euler & Gauss)

o Edwards curves

@ Twisted Edwards curves

@ Inverted Edwards coordinates

@ Extended twisted Edwards coordinates

A twisted Edwards curve is defined (ad(a — d) # 0)
ax? +y2 =1+ dX2y2 and (ax2 +y2)z2 =4 dx2y2

- . y a=-1: 8M
Elliptic Curve Point Addition { A= -1z =1 7M J
Elliptic Curve Point Duplication: a = —1: 3M + 4S J

2007: H. M. Edwards. A normal form for elliptic curves. Bulletin of the American Mathematical Society
2007: D. J. Bernstein and T. Lange. Faster addition and doubling on elliptic curves. Asiacrypt
2008: H. Hisil, K. K.-H. Wong, G. Carter, and E. Dawson. Twisted Edwards curves revisited. Asiacrypt



GMP-ECM EECM-MPFQ

Bl Montgomery curves Edwards curves

#S #M  #SH+#M #R || #S #M  #S+#M #R
256 | 1066 2025 3091 14| 1436 1638 3074 38
512 | 2200 4210 6410 14| 2952 3183 6135 62

1024 | 4422 8494 12916 14| 5892 6144 12036 134

8192 | 35508 68920 104428 14| 47156 45884 93040 550

P. Zimmermann and B. Dodson. 20 Years of ECM. Algorithmic Number Theory Symposium — ANTS 2006
D. J. Bernstein, P. Birkner, T. Lange, and C. Peters. ECM using Edwards curves. Mathematics of Computation (to appear)
D. J. Bernstein, P. Birkner, and T. Lange. Starfish on strike. Latincrypt, 2010



GMP-ECM EECM-MPFQ

Bl Montgomery curves Edwards curves

#S #M  #SH+#M #R || #S #M  #S+#M #R
256 | 1066 2025 3091 14| 1436 1638 3074 38
512 | 2200 4210 6410 14| 2952 3183 6135 62

1024 | 4422 8494 12916 14| 5892 6144 12036 134

8192 | 35508 68920 104428 14| 47156 45884 93040 550

Edwards curves vs Montgomery curves
I'= faster EC-arithmetic

IZ> more memory is required

= Difficult to run Edwards-ECM fast on memory-constrained devices

This work: faster, memory efficient Edwards ECM (on GPUs)

P. Zimmermann and B. Dodson. 20 Years of ECM. Algorithmic Number Theory Symposium — ANTS 2006
D. J. Bernstein, P. Birkner, T. Lange, and C. Peters. ECM using Edwards curves. Mathematics of Computation (to appear)
D. J. Bernstein, P. Birkner, and T. Lange. Starfish on strike. Latincrypt, 2010



Elliptic Curve Constant Scalar Multiplication

In practice people use the same By for many numbers:
Can we do better for a fixed B;?
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In practice people use the same By for many numbers:
Can we do better for a fixed B;?

B. Dixon and A. K. Lenstra. Massively parallel elliptic curve factoring. Eurocrypt 1992.
Recall: k =lem(1,2,...,By) =[]; pi with p; < By prime.
@ Observation: Use double-and-add approach, no additional storage.
Low Hamming-weight integers — fewer EC-additions

o ldea: Search for low-weight prime products
Partition the set of primes in subsets of cardinality of most three

@ Result: Lowered the weight by ~ a factor three

(Computing the shortest addition chain is conjectured to be NP-hard)



Elliptic Curve Constant Scalar Multiplication

In practice people use the same By for many numbers:
Can we do better for a fixed B;?

B. Dixon and A. K. Lenstra. Massively parallel elliptic curve factoring. Eurocrypt 1992.
Recall: k =lem(1,2,...,By) =[]; pi with p; < By prime.
@ Observation: Use double-and-add approach, no additional storage.
Low Hamming-weight integers — fewer EC-additions

o ldea: Search for low-weight prime products
Partition the set of primes in subsets of cardinality of most three

@ Result: Lowered the weight by ~ a factor three

1028107 - 1030639 - 1097101 = 1162496086223388673
w(1028107) = 10, w(1030639) = 16,
w(1097101) = 11, w(1162496086223388673) = 8

(Computing the shortest addition chain is conjectured to be NP-hard)



Elliptic Curve Constant Scalar Multiplication

We try the opposite approach (c(s) := #A in the addition chain)
@ Generate integers s with “good” D/A ratio

@ Test for Bi-smoothness and factor these integers s = H 5

J
J. Franke, T. Kleinjung, F. Morain, and T. Wirth. Proving the primality of very large numbers with fastECPP.
Algorithmic Number Theory 2004

Subset cover problem under minimization constraints



Elliptic Curve Constant Scalar Multiplication

We try the opposite approach (c(s) := #A in the addition chain)
@ Generate integers s with “good” D/A ratio

@ Test for Bi-smoothness and factor these integers s = H 5

J
J. Franke, T. Kleinjung, F. Morain, and T. Wirth. Proving the primality of very large numbers with fastECPP.
Algorithmic Number Theory 2004

@ Combine integers s; such that

HS;:HH§;J:kZlCm(l,...,Bl):Hpg
i J

i 0
i.e. all the §; ; match all the py

@ Such that Z c(si = H.@,-J) < c’(H pe) = c'(k)
i j ¢

Subset cover problem under minimization constraints



Addition /subtraction chain resulting in s
Ss=ay,...,a1,a =1

s.t. every a; = a; £ a, with 0 < j, k <.

No-storage ‘ Low-Storage

D-1\ .| /D-1 A
. Al
(A_1> 2 (A_1> A2

#integers




Addition /subtraction chain resulting in s
Ss=ay,...,a1,a =1

s.t. every a; = a; £ a, with 0 < j, k <.

No-storage ‘ Low-Storage

#integers

D-1\ .| /D-1 A
. Al
(A_1> 2 (A_1> A2

Combining the smooth-integers
o Greedy approach (use good D/A ratios first)
@ Selection process is randomized
@ Score according to the size of the prime divisors

o Left-overs are done using brute-force

All technical details in our paper!
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2.9 - 10°-smoothness testing

No-storage setting Low-storage setting
A D #ST A D #ST
1 5—-200 3.920-102 [1 5-—250 4.920 - 102
2 10—-200 7.946-10* | 2 10—-250  2.487-10°
3  15—-200 1.050-107 | 3 15—250 1.235-108
4 20-200 1.035-10° | 4 20—250 6.101-10%°
5 25—-200 8.114-10° | 5 25158  2.956-10'2
5 159 —-220 1.331-101
6 30—173 2.183-102 | 6 60—176 2.513-10!1
7 35—-84 5.791-101
Total 2.844 . 1012 3.403 - 102

2.9 - 10%-smoothness tests on our mini-cluster using 4.5 GB memory
(5 x 8 Intel Xeon CPU E5430 2.66GHz)
Results obtained in ~ 18 months



Example B; = 256, No-Storage

#D
11
14
15
15
18
19
21
23
28
30
33
36
41
49

8

361

CUPRAPUT WRWWNHNNNR D>

w
[e¢]

product

89-23
197 -83
193-191
199-19-13
109-37-13-5
157-53-7-3-3
223.137-103
179-149-61-5
127 -113-43-29-5-3
181-173-167-11-7-3
211-73-67-59-47-3
241-131-101-79-31-11
233-.229-163-139-107 - 17
251-239.227-151-97-71-41
28

Total

addition chain
SODII
SoD%S,D°
SoD¥? A D?
AoDY AgD?
AODIS
SoD®So D3
AsD¥ Ay D Ay D?
SoDBAD® S, D?
So D%
AoD A, DY Ay D3
SoD® A D2 Ay DM Sy D3 Sy DM
AoD?AyD*® Ay D Ay D?
SoD°SyD* Sy D Sy DY
SoD35,D* Ay D* Ao D2 Ay D®
DS

10/13



B #M + #S  speedup | #R reduction
256 [1] 3074 38
No-storage 2844 1.08 | 10 3.80
Low-storage 2831 1.09 | 22 1.73
512 [1] 6135 62
No-storage 5806 1.06 | 10 6.20
Low-storage 5740 1.07 | 22 2.82
1024 [1] 12036 134
No-storage 11508 1.05 | 10 13.40
Low-storage 11375 1.06 | 22 6.09
8192 [1] 93040 550
No-storage 91074 1.02 10 55.00
Low-storage 89991 1.03 | 22 25.00

[1] Starfish on Strike, D. J. Bernstein, P. Birkner, T. Lange, Latincrypt 2010
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B #M + #S  speedup | #R reduction
256 [1] 3074 38
No-storage 2844 1.08 | 10 3.80
Low-storage 2831 1.09 | 22 1.73
512 [1] 6135 62
No-storage 5806 1.06 | 10 6.20
Low-storage 5740 1.07 | 22 2.82
1024 [1] 12036 134
No-storage 11508 1.05 | 10 13.40
Low-storage 11375 1.06 | 22 6.09
8192 [1] 93040 550
No-storage 91074 1.02 10 55.00
Low-storage 89991 1.03 | 22 25.00

This does not take the memory overhead into account...
We expect a higher speedup in practice!

[1] Starfish on Strike, D. J. Bernstein, P. Birkner, T. Lange, Latincrypt 2010
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Performance Comparison, 192-bit moduli

performance (#curves), B; = 960

(1/sec) (1/%$100)

performance
ratio

Intel i7 [gnfslinux]
Intel i7 [EECM]
V45X35-10 [FPL'10]
V4SX25-10 [FCCM'07]

13661 4554

8677 2892
3586 766
7910 2654

performance (#curves), B; = 8192

GTX 295 [SHARCS'09]

Intel i7 [gnfslinux]
Intel i7 [EECM]

5895 -
1629 543
1092 364
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Performance Comparison, 192-bit moduli

performance (#curves), B; = 960 performance
(1/sec) (1/%$100) ratio

GTX 580, no-storage | 171486 42872 1.00
Intel i7 [gnfslinux] 13661 4554 9.41
Intel i7 [EECM] 8677 2892 14.82
V4SX35-10 [FPL'10] 3586 766 55.97
V45X25-10 [FCCM'07] 7910 2654 16.15

performance (#curves), B; = 8192
GTX 295 [SHARCS'09] | 5895 - -
GTX 580, no-storage 19869 4967 1.00
Intel i7 [gnfslinux] 1629 543 9.15
Intel i7 [EECM] 1092 364 13.65
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Performance Comparison, 192-bit moduli

performance (#curves), B; = 960 performance
(1/sec) (1/%$100) ratio

GTX 580, no-storage | 171486 42872 1.00
GTX 580, windowing 79170 19793 2.17
Intel i7 [gnfslinux] 13661 4554 9.41
Intel i7 [EECM] 8677 2892 14.82
V4SX35-10 [FPL'10] 3586 766 55.97
V45X25-10 [FCCM'07] 7910 2654 16.15

performance (#curves), B; = 8192
GTX 295 [SHARCS'09] | 5895 - -
GTX 580, no-storage 19869 4967 1.00

GTX 580, windowing 9106 2277 2.18
Intel i7 [gnfslinux] 1629 543 9.15

Intel i7 [EECM] 1092 364 13.65

12 /13



Conclusions

@ Methods to precompute ‘“good” addition chains
@ Speedup elliptic curve scalar multiplication with constants
@ Very suitable for parallel architectures

@ Can also be used to speed up cryptographic protocols where the
scalar is fixed

Compared to the state-of-the-art in cofactorization

@ Reduces the memory up to a factor 56
@ On GPUs — more than a two-fold performance speedup
e New (GPU) Edwards-ECM throughput records

Get the latest addition-chains from:

http://research.microsoft.com/ecmatwork

13/13



