

Crypto Agility for Industrial & IoT:

Challenges and Opportunities when Migrating to Post-Quantum Cryptography

Joppe W. Bos

Cryptographer & Technical Director (CC C&S, CTO)
March 2025

| Public | NXP, and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2024 NXP B.V.

Security impact of quantum computers

Requirements: Cryptography Asymmetric Symmetric RSA-3072 AES-128 ECC P-256 SHA-256

"All use of cryptography must use an algorithm that meets at least 128 bits of security."

Post-Quantum Cryptography

Requirement 1

Run on classical hardware

Requirement 2

Be secure against adversaries armed with classical computers

Requirement 3 NEW

Be secure against adversaries armed with quantum computers

Requirement 4

Be secure against Side-Channel Analysis (SCA) and Fault Injection (FI) attacks

Is Post-Quantum Cryptography relevant for you?

Post-quantum crypto standards are coming It doesn't matter if you believe in quantum computers or not

More standards are not necessarily better

PQC standards

Key Exchange

Digital Signature

New algorithms and standards

More ongoing and upcoming! FIPS 206, Round 4, On-Ramp, ISO, etc...

- ML-KEM, https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.203.pdf
 ML-DSA, https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.204.pdf
 SLH-DSA, https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.205.pdf
 LMS / XMSS, https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf

PQC migration guidance

USA (NSA)

- NSA recommendation available
- Commercial National Security Algorithm Suite 2.0
- Begin transitioning immediately
- PQC FW signature supported by 2025
- PQC transition complete by 2030 using SW update

Germany (BSI)

- BSI first recommendation (English)
- <u>BSI considerations</u> (German)
- Expectation is that beginning of 2030s, a relevant quantum computer is available to be a threat for high-secure applications
- "QKD is only suitable for specific use cases"

France (ANSSI)

- PQC <u>recommendations</u> for security products
- "As soon as possible" when long-lasting protection is required
- Others to migrate to classic-PQC hybrid in 2025 - 2030
- Switch to PQC-only expected by 2030

CNSA 2.0 Timeline

NIST IR 8547 (Initial Public Draft) Transition to Post-Quantum Cryptography Standards

Key Establishment Scheme	Parameters	Transition
Finite Field DH and MQV	112 bits of security strength	Deprecated after 2030 Disallowed after 2035
[SP80056A]	≥ 128 bits of security strength	Disallowed after 2035
Elliptic Curve DH and MQC [SP80056A]	112 bits of security strength	Deprecated after 2030 Disallowed after 2035
	≥ 128 bits of security strength	Disallowed after 2035
RSA [SP80056B]	112 bits of security strength	Deprecated after 2030 Disallowed after 2035
	≥ 128 bits of security strength	Disallowed after 2035

Use case, use case

Typical embedded use cases for new algorithms

Many more ongoing and upcoming!

		FIPS 203 ML-KEM	FIPS 204 ML-DSA	FIPS 205 (Verify) SLH-DSA	SP 800-208 (Verify) XMSS / LMS
1	Secure Boot	✓	✓	✓	✓
<u>s</u>	Secure Update	✓	✓	✓	✓
V G00	Secure Attestation	×	✓	×	×
Security Goals	Secure Debug / Test	✓	✓	×	×
Se	Certificates (PKI)	×	✓	✓	√ **
ļ	Runtime Crypto API	✓	✓	✓	✓
	TLS 1.3 (Hybrid)	✓	√ *	×	×
Protocols	IKEv2 (Hybrid)	✓	√ *	×	×
Prot	GSMA eSIM	✓	✓	×	×
	GlobalPlatform: TEE/MCU	✓	✓	✓	✓

^{*} Signatures for client authentication excluded from initial proposals, discussions ongoing ** Possible but the number of issued certificates should be carefully managed (e.g., Root CA)

Technical aspects of new algorithms

See pqm4 open source project for benchmarks! [A] Assuming Cortex-M4 @ 200 MHz software-only. For LMS numbers taken from Campos et al. [B]

Algorithm	PQC	Encaps	Decaps	SK	PK	СТ
EC-P384	No	"Fast"	"Fast"	48 B	48 B	96 B
FIPS 203 (ML-KEM)	Yes	4 ms	4 ms	2 400 B	1 184 B	1 088 B

Algorithm	PQC	Sign	Verify	SK	PK	Sig
ECDSA-P384	No	"Fast"	"Fast"	48 B	48 B	96 B
FIPS 204 (ML-DSA)	Yes	31 ms	12 ms	4 032 B	1 952 B	3 309 B
FIPS 205 (SLH-DSA)***	Yes	77 s	68 ms	96 B	48 B	16 224 B
SP 800-20 (LMS/XMSS)	Yes	**(Stateful) 19 s	13 ms	48 B	48 B	1 860 B

^{*} NIST Level 3 parameter sets ** Significant reduction possible by increasing memory consumption for state *** New parameter sets coming that will improve performance & signature size!

Size and speed are malleable

From theory to practice: small-memory implementations

Do these implementations actually run on embedded systems?

		pqı	m4
		Runtime	RAM
Dilithium-2	Sign	19 ms	50 kB
Dilitiliai 11-2	Verify	7 ms	11 kB
Dilitals is used 0	Sign	31 ms	69 kB
Dilithium-3	Verify	12 ms	10 kB
Diiille i E	Sign	42 ms	123 kB
Dilithium-5	Verify	21 ms	12 kB

From theory to practice: small-memory implementations

Do these implementations actually run on embedded systems?

		pqı	m4
		Runtime	RAM
Dilithium-2	Sign	19 ms	50 kB
Diliti liui 11-2	Verify	7 ms	11 kB
Dilithium-3	Sign	31 ms	69 kB
Diliti liui 11-3	Verify	12 ms	10 kB
51111 ·	Sign	42 ms	123 kB
Dilithium-5	Verify	21 ms	12 kB

NXP P	QC [A]	Slower	Smaller
Runtime	RAM	Runtime	RAM
61 ms	5 kB	3.2x	10.0x
16 ms	3 kB	2.3x	3.7x
119 ms	7 kB	3.8x	9.9x
29 ms	3 kB	2.4x	3.3x
168 ms	8 kB	4.0x	15.4x
50 ms	3 kB	2.4x	4.0x

All Dilithium parameter sets will fit on a device with ~8KB memory.

Price: factor 3 to 4 in performance → HW accelerators

Physical attacks

Side-channel attacks

- Power analysis (SPA, DPA)
- Electromagnetic analysis (SEMA, DEMA)
- Timing Analysis
- Photo-emission microscopy (high-end)
- Profiled, unprofiled and ML-assisted variants

Resistance against physical & logical attacks

Fault injection attacks

- Voltage or clock glitching
- Electromagnetic fault injection (EMFI)
- Body bias injection
- Laser fault injection
- Single and multi-shot scenarios

Invasive attack

- Focused Ion Beam (FIB) modifications
- Micro/Nano-probing of internal signals
- Signal forcing
- Delayering
- Reverse-engineering

From Theory to practice: Secure implementations (NXP PQC Team)

NIST CfP [A]: "Schemes that can be made resistant to side-channel attack at minimal cost are more desirable"

First completely masked implementation of Kyber / FIPS 203!

Year	Venue	FIPS 203	FIPS 204	Title		
2021	TCHES			Masking Kyber: First- and Higher-Order Implementations		
2021	RWC			Post-Quantum Crypto: The Embedded Challenge		
2022	TCHES			Post-Quantum Authenticated Encryption against Chosen-Ciphertext SCA		
2022	RWC			Surviving the FO-calypse: Securing PQC Implementations in Practice		
2023	TCHES			From MLWE to RLWE: A Differential Fault Attack on Randomized & Deterministic Dilithium		
2023	TCHES			Protecting Dilithium Against Leakage Revisited Sensitivity Analysis		
2024	RWC			Lessons Learning from Protecting CRYSTALS-Dilithium		
2024	TCHES			Exploiting Small-Norm Polynomial Multiplication with Physical Attacks		
2024	RWC			Challenges of Migration to PQ Secure Embedded Systems		

Completely masked implementation of Dilithium / FIPS 204!

Q3/Q4 2024: First NXP products with PQC support announced!

I NXP | Public

Attacks are still in active development

- Chip design goes through a careful process architecture and code development
- It can take a year between code freeze and customers getting their chips
 - And they can be on the market for over ten years

	Side-Chan	nel Attacks	Fault Injection Attacks		
	2016-2024	2024	2016-2024	2024	
ML-KEM	30	11	12	2	
ML-DSA	11	6	17	3	
HBS	3	0	3	0	

Number of publications concerning SCA and FA on PQC algorithms.*

- Crypto-agility/updateability is a solution
 - IF the capacity to do so is there, IF it fits, IF it still meets performance requirements

Hybrid migration

Hybrid migration

Transition Period

ECC / RSA benefit from decades of cryptanalysis including logical / physical attacks

Can combine security of both in a hybrid mode

" NIST will **accommodate** the use of a hybrid keyestablishment mode and dual signatures in FIPS 140 validation when suitably combined with a NISTapproved scheme "

"the BSI does not recommend using post-quantum cryptography alone, but only "hybrid" "

"the role of hybridation in the cryptographic security is crucial and will be **mandatory** for phases 1 and 2.

public key cryptography [...] would strongly benefit from the introduction of new alternative algorithms. "

Conclusions

Lesson 1: scattered standards will be a problem

Lesson 2: urgency when to migrate depends on use case

Lesson 3: often size is a bigger issue than speed

Lesson 4: side-channels are a moving target

Lesson 5: Migration is complicated → hybrid crypto

Get in touch!

Joppe W. Bos

joppe.bos@nxp.com

nxp.com

| **Public** | NXP, and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2024 NXP B.V.