RSA Keys with Common Factors

Joppe W. Bos

Cryptography group eXtreme Computing Group, Microsoft Research

Outline

Public-Key Cryptography

Cryptanalysis of Public-Key Cryptography

There have been many sanity checks of certificates and PKI

Analyzing RSA Standards

D. Loebenberger and M. Nüsken. Analyzing standards for RSA integers. In Africacrypt, 2011

Analyzing X.509

R. Holz, L. Braun, N. Kammenhuber, and G. Carle. The SSL landscape: a thorough analysis of the X.509 PKI using active and passive measurements. In ACM SIGCOMM, 2011

N. Vratonjic, J. Freudiger, V. Bindschaedler, and J.-P. Hubaux. The inconvenient truth about web certificates. In The Workshop on Economics of Information Security, 2011

Debian OpenSSL vulnerability

S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage. When private keys are public: results from the 2008 Debian OpenSSL vulnerability. In Internet Measurement Conference, 2009

There have been many sanity checks of certificates and PKI

Analyzing RSA Standards

D. Loebenberger and M. Nüsken. Analyzing standards for RSA integers. In Africacrypt, 2011

The entropy of the output distribution [of standardized RSA key generation] is always almost maximal, ... and the outputs are hard to factor if factoring in general is hard.

Analyzing X.509

R. Holz, L. Braun, N. Kammenhuber, and G. Carle. The SSL landscape: a thorough analysis of the X.509 PKI using active and passive measurements. In ACM SIGCOMM, 2011

N. Vratonjic, J. Freudiger, V. Bindschaedler, and J.-P. Hubaux. The inconvenient truth about web certificates. In The Workshop on Economics of Information Security, 2011

Debian OpenSSL vulnerability

S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage. When private keys are public: results from the 2008 Debian OpenSSL vulnerability. In Internet Measurement Conference, 2009

We look at things from a computational crypto point of view...

Our work

A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and C. Wachter. Public-Keys. In CRYPTO 2012, LNCS vol. 7417, pp 626-642. Full-version: Ron was wrong, Whit is right. In Cryptology ePrint Archive

At the same time...

N. Heninger, Z. Durumeric, E. Wustrow, J. A. Halderman. Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices. USENIX Security Symposium 2012 We look at things from a computational crypto point of view...

Our work

A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and C. Wachter. Public-Keys. In CRYPTO 2012, LNCS vol. 7417, pp 626-642. Full-version: Ron was wrong, Whit is right. In Cryptology ePrint Archive

At the same time...

N. Heninger, Z. Durumeric, E. Wustrow, J. A. Halderman. Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices. USENIX Security Symposium 2012

Data collection – Summer 2009 - November 2011

Aug. '10: Download all publicly-visible SSL certificates on the IPv4 Internet

6 185 372	X.509 certificates
5 481 332	PGP keys
11 666 704	public keys

Data collection – Summer 2009 - November 2011

Aug. '10: Download all publicly-visible SSL certificates on the IPv4 Internet

	6 185 372 5 481 332 11 666 704	X.509 certificat PGP keys public keys	tes		
X.509 47.6%: 77.7%: 33.4%:	$\begin{pmatrix} 6185230 & RSA \\ 141 & DSA \\ 1 & ECDSA \end{pmatrix}$ expiration date > 2011 use \geq SHA-1 satisfy both requirements	PGP keys {	2 546 752 2 536 959 397 621	ElGamal DSA RSA	
JJ. + /0.	satisfy both requirements			7	/ 19

RSA is the most widely used approach to achieve public-key cryptography

- Secret information: exponent d, prime factors p, q
- Public information: modulus n and the exponent e

$$n=p imes q$$
 with $ppprox q$
 $gcd(e,(p-1)(q-1))=1 ext{ and } d\equiv e^{-1} ext{ mod } (p-1)(q-1)$

- Encryption: $c = m^e \mod n$
- Decryption: $m = c^d \mod n$

Check the public exponent

X.509		PGP		Combined	
е	%	е	%	е	%
65537	98.4921	65537	48.8501	65537	95.4933
17	0.7633	17	39.5027	17	3.1035
3	0.3772	41	7.5727	41	0.4574
35	0.1410	19	2.4774	3	0.3578
5	0.1176	257	0.3872	19	0.1506
7	0.0631	23	0.2212	35	0.1339
11	0.0220	11	0.1755	5	0.1111
47	0.0101	3	0.0565	7	0.0596
13	0.0042	21	0.0512	11	0.0313
65535	0.0011	$2^{127} + 3$	0.0248	257	0.0241
other	0.0083	other	0.6807	other	0.0774

Note: 8 times e = 1 was used!

Check moduli sizes

Moduli sizes				
%	bits	%	bits	
0.01	384	0.04	3072	
1.6	512	1.5	4096	
0.8	768	0.01	8192	
73.9	1024	0.003	16384	
21.7	2048			

Primality and small factors

- 2 moduli are prime
- 171 have a factor $< 2^{24}$
- (68 are even)

These RSA keys were discarded.

Debian moduli

• 30 097 (21 459 distinct) blacklisted keys

Implications

User 1 can decrypt all messages from user 2 (and vice versa)

- Most of the time harmless: renewal of key
- Possible explenation: Low-entropy when generating keys

```
seed(initial_randomness);
do { p=random(); } while( isprime(p) != true );
do { q=random(); } while( isprime(q) != true );
n = p*q;
```

Identical keys II

Cluster: certs/keys with the same modulus

Note: One cluster of size 16489

4.3% of the RSA moduli are shared

$$K_1: a \times b$$
 $K_2: c \times d$

• User 1 and user 2 have secure keys

$$\begin{array}{|c|c|c|c|c|}\hline K_1:a\times b & K_2:c\times d\\ \hline K_3:b & \times & c \\ \hline \end{array}$$

• User 1 and user 3 share a factor and User 2 and 3 share a factor

$$\begin{array}{|c|c|c|c|c|}\hline K_1 : a \times b & \hline K_2 : c \times d \\ \hline K_3 : b & \times & c \\ \hline \end{array}$$

- User 1 and user 3 share a factor and User 2 and 3 share a factor
- Greatest common divisor: everyone can break these keys!

Given two RSA moduli n_1 and n_2 ,

$$n_1 \neq n_2 \wedge gcd(n_1, n_2) \neq 1,$$

results in a complete loss of security for these moduli.

Checking all RSA keys for shared factors

- Straight-forward approach: pprox ten core-years
- Smarter approach: pprox ten core-hours

Given two RSA moduli n_1 and n_2 ,

$$n_1 \neq n_2 \wedge gcd(n_1, n_2) \neq 1,$$

results in a complete loss of security for these moduli.

Checking all RSA keys for shared factors

- Straight-forward approach: pprox ten core-years
- Smarter approach: pprox ten core-hours

5321 X.509 certificates, 4627 RSA moduli

RSA keys V - K9

Affected keys

We found 14 901 distinct primes factoring 12 934 distinct moduli 21 419 X.509 certs and PGP keys are affected None of these are blacklisted

Primes		Moduli		
#	bits	1 1	-#	bitc
307	256			510
2	257		214 10,700	1024
14 592	512		12720	1024

• **3 201** 1024-bit RSA moduli occur in 5 250 certificates which are not-expired and use SHA-1

RSA requires generating two random prime numbers These primes must not be selected by anyone else before

NIST recommends: size(random seed) = $2 \times$ size(security level)

Possible explanations:

- ullet Poor random initial seeding \rightarrow duplicate keys
- Using local entropy after each guess
 - "poor initial guess" p_1 , with prob $1/\log(p_1)$ this is prime
 - next guesses use the local entropy

```
seed(initial_randomness);
do { p=random(); } while( isprime(p) != true );
do { q=random(); } while( isprime(q) != true );
n = p*q;
```

February 2012, new scan by EFF

7.2M distinct X.509 certs (up from 6.2M)

February 2012, new scan by EFF

7.2M distinct X.509 certs (up from 6.2M)

RSA-1024

- $4.7M \rightarrow 3.7M$ keys
- ullet > 5000 affected keys are no longer present
- 13019 new keys affected

New: 10 RSA-2048 keys are affected, two have not expired and use SHA-1

Multi-secret systems (RSA) vs. single-secret systems (EIGamal, (EC)DSA)

Multi-secret systems (RSA) vs. single-secret systems (EIGamal, (EC)DSA)

Multi-secret systems (RSA) vs. single-secret systems (ElGamal, (EC)DSA)

Misinterpretations in the Media

- "This is simply the Debian PRNG bug" All our results exclude the blacklisted Debian keys.
- "RSA is insecure"

When properly generating random primes then RSA is still secure.

• "Only embedded devices are affected" We have multiple examples of affected keys between users.