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Abstract On December 12, 2009, the 768-bit, 232-

digit number RSA-768 was factored using the number

�eld sieve. Overall, the computational challenge would

take more than 1700 years on a single, standard core.

In the article we present the heterogeneous computing

approach, involving di�erent compute clusters and Grid

computing environments, used to solve this problem.
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1 Introduction

Scienti�c calculations in domains such as physics (�uid

dynamics, high-energy physics etc.), chemistry (quan-

tum chemistry, molecular modeling, etc.), biology (large

scale genomic or proteomics projects), and climate mod-

eling often require massive amounts of computing power.

If the kind of problem calls for tightly coupled massively
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parallel computing, it is often well suited for supercom-

puters and stands a good chance to attract funding both

to get access to the proper hardware and to develop

suitable software. In contrast, embarrassingly parallel

applications, where any number of stand-alone devices

will do, are often not welcome on classical supercomput-

ers but are instead relegated to high-performance com-

puting clusters, Grid infrastructures, or desktop com-

puting environments such as BOINC or Condor.

The latter category includes cryptographic appli-

cations. Although they are not less CPU-demanding

than other scienti�c applications, they are not consid-

ered to be of much interest by the HPC community.

Despite this disregard, many cryptographic problems

are computationally, mathematically and algorithmi-

cally challenging and non-trivial, and practically rel-

evant for users of cryptography (i.e., almost everyone

these days). One of these problems is integer factoriza-

tion, the subject of this paper: we present the heteroge-

neous computational infrastructure that was used to set

a new integer factorization record by factoring the chal-

lenge number RSA-768, a 768-bit, 232-digit composite

integer [11].

We used the approach commonly used to factor large

integers since the late 1980s. Thus, we did not aim for

a single, homogeneous computing environment or sin-

gle supercomputer, but used a heterogeneous compute

environment consisting of several cluster and Grid en-

vironments (in Australia, Japan, and many European

countries), di�erent operating systems, job execution

environments and technical personnel. Several techni-

cal as well as non-technical reasons have led us to a

such a heterogeneous approach:

� Single Grid infrastructures such as the European

Grid infrastructure: only a limited number of re-

sources (for a limited time) in the European Grid
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environment could be made available to the RSA-

factorization problem. Therefore, even though using

a Grid-only environment is promising and conve-

nient, we had to look into alternative approaches.

� Individual clusters at di�erent sites are available but

are managed in di�erent ways (i.e., di�erent local re-

source management systems, di�erent �le systems,

di�erent hardware, di�erent site expertise with re-

spect to the RSA application, etc.). Again, stan-

dardized Grid protocols and middleware would have

helped to address the problem in a more homoge-

neous way but the clusters we used are not part of

a single Grid environment.

� A diversi�ed, heterogeneous environment better rep-

resents the Internet as a whole than any organized

computer infrastructure. It thus allows a more re-

liable estimate of the havoc miscreants could cause

by large surreptitious cryptanalytic e�orts.

In brief, the RSA-768 challenge has the following

features and computational stages. The �rst main stage

is the most CPU intensive and embarrassingly parallel

part of the computation and also created most data.

Compressed about 5 TB had to be transferred over the

Internet, at a rate of about 10 GB per day, to a central

location where, once enough data had been collected,

the second main stage was prepared. This stage is not

embarrassingly parallel and was traditionally done on a

single supercomputer or, later, on a single tightly cou-

pled cluster. Lacking access to su�ciently large clus-

ters for a long enough period of time, we had to adopt

a somewhat more complicated approach that allows

usage of a limited number of tightly coupled clusters

at di�erent locations. As a result, roughly 100GB of

data had to be distributed, using the Internet again, to

the contributing clusters (restricting to those in France,

Japan, and Switzerland). They worked independently,

with the exception of an intermediate step that had to

be done on a single tightly coupled cluster with 1 TB

of RAM. This implied, yet again, a substantial data ex-

change. In summary, the RSA-768 challenge was solved

using a truly heterogeneous infrastructure with no com-

munication among the contributors nor computational

cores except to break the computation into independent

tasks.

Given the embarrassingly parallel nature of the �rst

main stage, the most CPU intensive part of the com-

putation, we could have used one of the tools that al-

low contributions by volunteers on the Internet. That

is how it was done in the late 1980s and early 1990s, us-

ing crude email and FTP-based precursors of currently

popular tools. Indeed, an ongoing integer factorization

BOINC project [14] does just that. Having managed

several such proof-of-concept projects from 1988 un-

til about 1995, we found that a lot of time goes into

addressing simple concerns of the contributors, in par-

ticular if considerable RAM resources are required (as

was the case for RSA-768 with at least one but prefer-

ably two GB RAM per core). We chose to limit our

project to a limited set of dedicated and knowledgeable

researchers who could be expected to resolve occasional

issues themselves.

Section 2 gives the cryptographic motivation, Sec-

tion 3 presents the computational steps in more detail,

and Section 4 describes the heterogeneous compute in-

frastructure used.

2 Cryptographic Background and Motivation

Cryptography is ubiquitous on the Internet. Authenti-

cation methods used by browsers, Grid computing ap-

plications, and websites accessed through HTTPS com-

monly rely on X.509 certi�cates based on the RSA cryp-

tosystem. This means that the security depends on the

hardness of factoring an appropriately chosen integer,

typically of 1024 or 2048 bits: factoring that integer

could undermine the security of that particular instance

of the HTTPS protocol.

A 1024-bit integer has more than 300 decimal digits,

a 2048-bit one twice as many. Dealing with such large

numbers makes protocols unwieldy. Smaller numbers

would be more e�cient � but they are easier to factor

and give less security. One would like to use the small-

est key size that gives an acceptable level of security.

Once a certain size has been picked it is hard to modify

the choice. But integer factoring constantly gets easier,

not just because computers keep getting faster but also

because factoring methods keep getting better. So far

this goes at a fairly steady pace. However, discovery of

an e�cient factoring method cannot be ruled out: it is

conceivable that from one moment to the next the en-

tire information security infrastructure collapses1. This

would a�ect much more than just web-security, since

most of the public and private sectors use the same

cryptographic methods as HTTPS does. A �disaster� of

this sort has not occurred yet � at least, not that we

are aware of � and most of us simply hope that it will

not happen either.

The steady progress is taken into account in crypto-

graphic standards that prescribe key sizes for RSA. At

this point in time we are on the verge of an important

transition: the USA National Institute of Standards and

Technology (NIST) recommends phasing out 1024-bit

1 Integer factorization is easy on a quantum computer [16].
Quantum computers have not been realized yet. Estimates
and opinions on this subject vary.
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RSA by the end of the year 2010 and to adopt 2048-bit

RSA or other systems of comparable security. This does

not mean that by the end of 2010 integers of 1024 bits

can suddenly be factored. It means that the security of

1024-bit RSA is perceived to become too low and that,

indeed, several years down the road, factoring 1024-bit

integers may become feasible.

How does our e�ort, factoring a 768-bit RSA chal-

lenge key, �t in this picture? We now know what ef-

fort su�ced to factor a 768-bit integer. Interestingly,

it turned out to be an order of magnitude easier than

predicted by some in the �eld [15]. Combined with a

theoretical analysis we can now more accurately predict

what would be required to factor a single 1024-bit RSA

challenge. Unless an integer factoring breakthrough oc-

curs, we are convinced that an e�ort on a scale similar

to ours will have no chance of success within the next

�ve years. After that, all bets are o� [11]. Thus, NIST

rightly encourages phasing out 1024-bit RSA but there

is no need to rush into a costly, overhasty security up-

grade. There is almost certainly no risk in a more eco-

nomical gradual adoption of the new standards, as long

as the transition is complete by the year 2014.

Furthermore, our result shows that an e�ort of this

sort can be pulled o� even if there is no uniformity in

the platforms used or in the way they communicate.

This requires an extra degree of prudence when select-

ing cryptographic key sizes, as the enormous compu-

tational power of Internet as a whole, or a substantial

fraction thereof, can in principle be harnessed for simi-

lar cryptanalytic calculations.

A project of this sort is scienti�cally interesting in

its own right as well. When trying to solve larger prob-

lems there are always new challenges that must be dealt

with. For instance, for a previous large scale e�ort [1],

when dividing the second main step over a number of in-

dependent tightly coupled clusters, we had not realized

that the faster clusters would �nish their task much

earlier than the slower ones, quite simply because we

had never ran this step for such a long time in such

a heterogeneous environment. Faced with the �threat�

of long idle times on some clusters, a new algorithmic

twist was developed allowing total �exibility in task

sizes, eliminating all idle times. It considerably facil-

itated management of the present project where the

new approach was used for the �rst time. This project,

in turn, triggered algorithmic advances for new types

of processors, adapting not just to multicores but also

to the decreasing amount of RAM per core. This will

prove useful in later projects and will greatly in�uence

the feasibility of a 1024-bit factoring attempt.

3 The Computational Challenge

When faced with a factoring problem, one �rst checks

for small factors. For RSA challenges this step can be

omitted, since the RSA challenge numbers are known to

be the product of two primes of about the same size and

therefore they have no small factor. The fastest known

algorithm to factor RSA challenges is the number �eld

sieve (NFS, [12]), which works by combining relations,

as illustrated below. The two main steps mentioned in

Section 1 are the most CPU intensive steps of NFS:

in the �rst step relations are generated, in the second

step they are combined. In this section we present a

more complete outline of NFS, concentrating on the

computational e�ort and data sizes for RSA-768, while

avoiding all underlying mathematical details. In brief,

we describe the �ve main steps of the overall work�ow.

We give a simple example to show how relations are

combined to factor an integer while avoiding the intrica-

cies involved in the NFS. For the integer 143 a relation

would be given by 172 ≡ 3 mod 143 because the dif-

ference 172 − 3 is an integer multiple of 143. Similarly,

192 ≡ 3·52 mod 143 is a relation. These relations can be

combined into the relation 172 · 192 ≡ 32 · 52 mod 143

with squares on both sides. The square roots 17 · 19
and 3 · 5 of both sides follow immediately. The greatest

common divisor of 143 and the di�erence 17 · 19− 3 · 5
of the square roots turns out to be 11, a factor of 143.

Relations for NFS are more complex and involve alge-

braic integers. De�ning those requires proper polyno-

mials, which are selected in the �rst step of NFS:

1. Preparatory step: Polynomial selection. The

runtime of NFS depends strongly on the parameter

choice. The most important choice is that of a pair of

irreducible polynomials f , g that de�ne two algebraic

number �elds. For RSA-768 we �xed degree(f) = 6

and degree(g) = 1, implying that the number �eld de-

�ned by g is the �eld Q of the rational numbers. The

best current method to �nd good f and g is a mathe-

matically rather sophisticated, embarrassingly parallel

search. A good pair was found in 2005 already, after

three months on 80 AMD Opteron cores in Bonn. A

comparable e�ort at EPFL, in 2007, did not turn up a

better pair. Overall, more than 2 · 1018 pairs were con-

sidered, at a rate of 1.6 billion pairs per core per sec-

ond. Although this is a considerable computation, as

it would have required a day of computing on a 15 000

core cluster, it is dwarfed by the other steps.

2. First main step: Sieving. In this step many rela-

tions are sought: co-prime pairs of integers a, b such that

f(a, b) ·g(a, b) has no large prime factors. How many re-

lations are needed depends on the size of those prime
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Table 1: For each range of special q values, the contributor that sieved that range is listed, along with the amount of RAM
used for the sieving program, the number of relations found, and the approximate number of relations that was found per
task. The number of relations per task decreases with increasing special q values. Independently, the number of tasks per �xed
length range decreases because the number of primes per range decreases. Together these e�ects contribute to the overall drop
in the number of relations found per �xed length range (as exempli�ed by the two arrows), though for some machines it turned
out to be faster to produce fewer relations per range. Note also that, on average, fewer relations are found per task if less RAM
is available: except for the low range of special q values, we therefore preferred to use machines with at least 2GB RAM per
core to sieve the more productive ranges.

q-range
contributor RAM

number of percentage relations percentage
(millions) relations found of relations per task of tasks
100 - 170: EPFL Greedy (89% done) .5GB 530 837 179 0.83% 159 0.72%
170 - 400: not assigned
400 - 444: CWI .5GB 493 758 264 0.77% 223 0.48%
444 - 450: not assigned
450 - 1100: NTT 1GB 6 040 634 011 9.39% 190 6.84%
1100 - 1200: EPFL Lacal304 2GB 1 085 485 063 1.69% 227 1.03%
1200 - 1500: EGEE 1-2GB 2 906 539 451 4.52% 204 3.06%
1500 - 2000: Bonn 2GB 4 953 637 869 7.70% 211 5.05%
2000 - 2035: AC3 1.7GB 278 083 916 0.43% 170 0.35%

2035 - 2100: EPFL

Callisto
Lacal140
Lacal304

 2GB 583 487 657 0.91% 193 0.65%

2100 - 2400: EPFL Lacal304 2GB 2 644 305 334 4.11% 204 2.79%
2400 - 2500: INRIA 2GB 889 307 119 1.38% 192 1.00%
2500 - 2600: INRIA 1-2GB 729 836 401 1.13% 158 0.99%
2600 - 2700: EPFL Lacal304 2GB 811 399 503 1.26% 176 0.99%
2700 - 2800: CWI 1-2GB 742 575 917 1.15% 161 0.99%
2800 - 3000: INRIA 2GB 1 633 654 656 2.54% 178 1.97%
3000 - 3300: EPFL Callisto 2GB 2 256 163 004 3.51% 164 2.96%
3300 - 3600: EPFL Lacal140 2GB 2 177 658 504 3.38% 159 2.95%
3600 - 4000: INRIA 1-2GB 2 526 184 293 3.93% 139 3.91%
4000 - 4200: INRIA 2GB 1 449 153 442 2.25% 160 1.95%
4200 - 4600: INRIA 1GB 2 320 916 889 3.61% 129 3.87%
4600 - 4700: not assigned
4700 - 4760: NTT 1GB 273 747 997 0.43% 102 0.58%
4760 - 4800: Bonn 2GB 258 785 877 0.40% 144 0.39%
4800 - 5200: EPFL Lacal304 2GB 2 554 062 089 3.97% 143 3.84%
5200 - 5400: EPFL Lacal140 2GB 1 245 110 392 1.94% 139 1.93%
5400 - 5600: EPFL Callisto 2GB 1 235 783 457 1.92% 139 1.91%
5600 - 5800: EPFL Lacal304 2GB 1 219 439 733 1.90% 137 1.91%
5800 - 6000: EPFL Callisto 2GB 1 202 926 042 1.87% 135 1.92%
6000 - 6200: EPFL Lacal140 2GB 1 182 875 721 1.84% 133 1.91%
6200 - 6300: INRIA

EPFL Lacal304

}
not done6300 - 6500:

6500 - 7000: INRIA 1-2GB 2 476 812 744 3.85% 112 4.76%
7000 - 7900: NTT 1GB 3 574 335 463 5.56% 90 8.54%
7900 - 8900: INRIA 1GB 4 589 325 052 7.13% 105 9.40%
8900 - 9300: INRIA 1GB 1 776 088 161 2.76% 102 3.75%
9300 - 9400: CWI 1-2GB 495 380 881 0.77% 114 0.93%
9400 - 9500: EPFL Greedy (80% done) 1GB 351 107 747 0.55% 101 0.75%
9500 - 9600: Leyland 1GB 443 023 506 0.69% 102 0.93%
9600 -10000: INRIA 1GB 1 729 354 187 2.69% 99 3.76%
10000 -11000: INRIA 1GB 4 201 641 235 6.53% 97 9.32%
11000 -11100: CWI 1-2GB 471 070 974 0.73% 109 0.93%

factors. For RSA-768 we used the bound 240. We ana-

lyzed that enough relations could be found by searching

through |a| < 6.3 · 1011 and 0 < b < 1.4 · 107. This im-

plies that for more than 1019 co-prime pairs a, b the

value f(a, b) · g(a, b) had to be tested for divisibility by

the almost 38 billion primes < 240. Per prime p this can

be done for many a, b pairs simultaneously using siev-

ing : if a polynomial value such as f(a, b) is a multiple

of p, then so is f(a+mp, b+ np) for integers m and n.

The sieving can be distributed, in an embarrassingly

parallel fashion, by assigning disjoint ranges of b-values

to di�erent contributors. Given a b-value one just sieves

all |a| < 6.3 · 1011. This straightforward approach was

used in the earliest distributed NFS factoring e�orts.

A more e�cient and still embarrassingly parallel strat-

egy is to assign disjoint ranges of primes q to di�erent

contributors, and to limit the search, given such a spe-

cial q, to all relevant a, b pairs for which f(a, b) is divis-

ible by q. Each special q results in a number of di�erent

sieving tasks that varies from zero to degree(f) (i.e.,

six, for RSA-768). This approach, which is a bit harder

to program, has gained popularity since the mid 1990s.

We used it for RSA-768 and we could fully inspect 15

to 20 million a, b pairs per second on a 2.2GHz core

with 2GB RAM. Sieving task were distributed among

the contributors depending on their available computer

resources.

Overall, about 465 million sieving tasks were pro-

cessed, for special q values between 108 and 1.11 · 1010.
An average sieving task took about 100 seconds on a
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core as above, and resulted in about 134 relations at

about 150 bytes per relation. Sieving started in the

summer of 2007 and lasted for almost two years. With

about 1500 core years, we achieved a sustained perfor-

mance equivalent to more than 700 cores, full time for

two years. Table 1 gives a breakdown of the ranges of

special q values processed by the di�erent contributors.

Section 4 presents more details of the infrastructures

used. Including duplicates, in total more than 64 bil-

lion relations were generated. They were collected at

EPFL, with several backups, also o�-campus.

The main input for a processor contributing to the

sieving is the range of special q values to be processed.

The number of sieving tasks per range behaves roughly

as the number of primes in it. Thus, it slowly drops

o� with increasing q values, and for a range [L,U ] can

be estimated as U
ln(U)−1 −

L
ln(L)−1 . For a range of length

1000 with L ≈ 109 this results in about 48 sieving tasks,

which is reduced to about 43 for L ≈ 1010. Such ranges

can typically be processed in less than two hours.

Compressed storage of the relations, along with the

factorizations of the f(a, b) · g(a, b)-values, took 5 TB.

This amount of storage is by no means exceptional, and

should not be hard to deal with. Nevertheless, storage

problems caused most stress while sieving for RSA-768,

mostly due to the lack of reliability of the storage de-

vices. Not just disks failed (with RAID servers as a �rst

line of defense), disk casings failed as well, with unfore-

seeable consequences for the disks and RAID servers. In

the course of the sieving we decided to hedge our bets

by spreading the risk over a variety of manufacturers

and vendors. Additionally, human errors are unavoid-

able and rigid rules had to be enforced to minimize the

consequences.

Otherwise, sieving is the least stressful step of NFS,

as it is not just embarrassingly parallel but also tolerant

to sloppiness and errors. All that counts is if ultimately

enough relations will be found, for the rest one mostly

needs patience. It does not matter what special q was

used to �nd a relation, and it does not matter much

� except for a minor loss of e�ciency, and unless it

occurs systematically � if not all special q values in a

range are properly processed or if occasionally some

of the data generated gets lost or corrupted (as the

correctness of a relation can easily be veri�ed at the

central repository: anything that is not correct is simply

discarded). A crash of one or more processors does not

a�ect the results of any of the other processors, and a

task that may be left un�nished due to some mishap can

be reassigned to another processor or it can be dropped

altogether.

3. Intermediate step: Filtering. After duplicate re-

moval, useless relations are removed. These include, for

instance, relations for which f(a, b) contains a prime

factor that does not occur in any other relation. This

can only conveniently be done if all data reside at a sin-

gle location. The surviving relations are used to build

an over-square bit-matrix with rows determined by the

exponent-vectors of the primes in the remaining f · g-
values, or combinations thereof. While building this bit-

matrix, many choices can be made. Because dependen-

cies among the rows will be determined in the next step,

it pays o� to aim for a low dimension and overall weight

(i.e., number of non-zero matrix entries).

For RSA-768, the 64 billion relations resulted in 48

billion non-duplicates. Several matrices were built, the

best of which had 193 million rows and 28 billion non-

zero entries. It required about 105GB of disk space.

The entire process to convert the raw relations into a

matrix took about two weeks of computing on a 304-

core cluster at EPFL: relatively speaking quite modest

but rather cumbersome as large amounts of data had

to be moved around.

4. Second main step: Matrix. Although the siev-

ing step requires more CPU time, the matrix step is

considered to be the most challenging step of current

large scale factoring e�orts. Gaussian elimination was

used for factoring related matrices until the early 1990s.

It was abandoned in favor of the block Lanczos algo-

rithm [6] which requires much less time and memory

due to the sparseness of the input matrix. A disadvan-

tage of block Lanczos (which it shares with Gaussian

elimination) is that it does not allow independent par-

allelization: it must be run on a single tightly coupled

massively parallel machine. We are still in the process of

evaluating the feasibility of doing this step using block

Lanczos at a single location.

Because of this disadvantage, we preferred block

Wiedemann [7]. Though not embarrassingly parallel,

the computation can be split up into a limited num-

ber of chunks. Each chunk can be processed on a tightly

coupled cluster, independently of the other chunks each

of which may simultaneously be processed at some other

location.

More precisely, block Wiedemann works in three

stages: a �rst stage that can be split up as above, a

brief central stage that needs to be done at one location,

and a �nal stage that is less work than the �rst stage

and that can be split up into any number of chunks if

enough checkpoints are kept from the �rst stage. The

�rst and �nal stages both consist of iterations of ma-

trix × vector multiplications, where the matrix is the

�xed, sparse bit-matrix resulting from the �ltering step,

and where the (bit-)vector is constantly updated (as
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the result of the previous multiplication). It is possi-

ble to use k di�erent initial bit-vectors and to reduce

the number of multiplications per bit-vector by a fac-

tor of k, as long as the total number of multiplications

by bit-vectors remains constant. This comes at vari-

ous penalties, though, and complicates the brief central

stage if k gets large.

For RSA-768 we used k = 8 · 64 = 512 and 8 chunks

each of which processed 64 bit-vectors at a time. Per

chunk, 565 000 matrix × vector multiplications had to

be done in the �rst stage, 380 000 in the third stage,

for our matrix of dimension 193 million with 28 billion

non-zero entries. Running a �rst or third stage chunk

required 180GB RAM. Table 3 in Appendix A lists the

various clusters used for the �rst and third stage, along

with the time required per multiplication per chunk.

Obviously, the timings vary considerably depending on

the type of processor, number of cores, and type of in-

terconnect. For instance, on 12 dual AMD 2427 nodes

(hex-core, thus 144 cores, with 16GB RAM per node)

with In�niBand, a multiplication takes about 4.5 sec-

onds. This implies that on 48 such nodes (576 cores �

56 such nodes with 672 cores were installed at EPFL

while the �rst stage was underway) all eight chunks

for stages one and three could have been completed in

about 100 days, for about 160 core years of comput-

ing. The central stage took a bit more than 17 hours on

the 56 freshly installed nodes, using all available 896GB

RAM (except for a short period when a terabyte was

needed and swapping occurred), but just 224 of the 672

available cores. On the variety of clusters that was ac-

tually used the entire block Wiedemann step took 119

days.

Unlike sieving, no errors can be tolerated during

the matrix step. The iterations thus included frequent

checkpoints to ensure that the computation was still

on-track. We experienced no glitches. In the original

distributed block Wiedemann all chunks consisted of

an equal amount of work, i.e., the same number of mul-

tiplications on matrices and vectors of identical sizes.

We used a more �exible version of the algorithm, so

that faster jobs can do more multiplications and slower

ones fewer, as long as the same overall number of mul-

tiplications as before is reached.

5. Finishing up: Square root. Finding out if the de-

pendencies as produced by the matrix step are correct

is probably the most nerve-racking part of any large

scale factoring project. Also from a mathematical point

of view, deriving a factorization from a dependency is

one of the more exciting steps. Computationally speak-

ing, however, it is usually the least challenging step. For

RSA-768 it took about one core day and resulted in the

following factorization.

RSA-768 =

12301866845301177551304949583849627207728535695

95334792197322452151726400507263657518745202199

78646938995647494277406384592519255732630345373

15482685079170261221429134616704292143116022212

40479274737794080665351419597459856902143413

=

33478071698956898786044169848212690817704794983

71376856891243138898288379387800228761471165253

1743087737814467999489

×
36746043666799590428244633799627952632279158164

34308764267603228381573966651127923337341714339

6810270092798736308917.

The correctness of the result, once obtained after 1700

core years of computing, can be veri�ed in a fraction of

a second.

Table 2 gives the overall work�ow, along with the

percentages contributed (for the sieving measured in

di�erent ways).

4 Heterogeneous Compute Infrastructure

In this section we describe the heterogeneous environ-

ment used for the factorization of RSA-768, with a focus

on the management of the sieving step.

As set forth in Section 3, sieving consists of process-

ing a range of special q values, where for each special q

value at most six sieving tasks have to be performed.

Given a range, this is carried out by a C program. This

program, called lasieve, resulted from many years of

research, development and re�nements at the university

of Bonn. All collaborators got statically linked versions

of lasieve, geared toward their hardware (processor

type and cache size) and operating systems. The num-

ber of relations found per task drops o� with increasing

special q values. One therefore tries to completely pro-

cess all smaller ranges before moving to larger ones,

leaving as few unprocessed gaps as possible.

At the highest level, EPFL distributed relatively

large, disjoint ranges of special q values among the col-

laborators, depending on the speci�cs of the cluster(s)

or machines to be used. The way a range is processed

depends on how lasieve is run, the cluster usage

agreements, and the job scheduler. In any case, a large

range assigned to a site must be partitioned into smaller

subranges, each of which can be processed in a reason-

able amount of time by a CPU core running lasieve:
as mentioned, a range of length 1000 takes about two
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Table 2: Work�ow of the project. The sieving percentages are only rough indications for the overall sieving contributions
because tasks for larger special q values are less productive, and as a consequence also faster to process: the truth is biased
toward the relation contribution percentage. The last two rows contain approximations for core years (�cy�) spent and dates
(yyyy:mm:dd) of the calculation.

polynomial
selection

sieving �ltering
matrix

squareroot︷ ︸︸ ︷
stage 1 stage 2 stage 3

Bonn
Lacal140

}
→



relations tasks
AC3 0.43% 0.35%
Bonn 8.10% 5.44%
Callisto 7.60% 7.01%
CWI 3.42% 3.33%
EGEE 4.52% 3.06%
Greedy 1.37% 1.47%
INRIA 37.80% 44.68%
Lacal140 7.46% 7.01%
Lacal304 13.23% 10.79%
Leyland 0.69% 0.93%
NTT 15.37% 15.96%



→Lacal304→


Callisto 1.8%
Lacal672 32.5%
INRIA 46.8%
NTT 18.9%

→Lacal672→

 Lacal672 78.2%
INRIA 17.3%
NTT 4.5%

→ Lacal672

20 cy 20 cy ≈ 1500 cy < 12 cy 95 cy < 1
2 cy 63 cy < 1

10 cy
2005 2007:06 2007:08 - 2009:06 2009:08 2009:09-11 2009:11:03 2009:11-12 2009:12:12

hours to process. The naive approach to assign sub-

ranges is to do so upfront at the job scheduler's level be-

fore any particular CPU core has been allocated to pro-

cess that subrange using lasieve. It allows formanual

range partitioning and assignment. This works if, bar-

ring exceptional irregularities, one may assume that all

jobs, once put in the queue to be executed, will eventu-

ally be taken into execution and that, when taken into

execution, they will �nish their allotted range. This sit-

uation may apply if one is the sole user or owner of

a desktop machine or cluster, or if otherwise favorable

access conditions have been granted to the compute re-

sources. It applied to some contributors.

Even so, several set-ups used for the sieving used an

automated approach where range assignment is post-

poned to the moment that a CPU core is ready to start

sieving. It avoids range fragmentation caused by the

apparently unavoidable fact of life that in some envi-

ronments there are always jobs that disappear from the

queue without ever having been taken into execution.

Nevertheless, and in either case, it may be desirable

to conduct post-mortems of occasional crashes. This

would involve cumbersome analysis of partial output

�les to extract (and reassign) previously assigned but

un�nished ranges. Several such systems were used (and

are described below) that are semi-automated in the

sense that ranges were assigned automatically, but that

make the implicit assumption that range fragmentation

will be kept to a minimum, i.e., that normally speak-

ing assigned ranges will be fully processed and will not

be left un�nished. We stress again that the existing sys-

tems that we used are heterogeneous and do not share a

common software layer. Additionally, the systems were

not always available at or for the same time, and re-

source allocation and availability was not guaranteed

neither at the beginning nor during the computational

runs.

This assumption, which is based on a 100% comple-

tion model of assigned ranges, can certainly not always

be made. Traditionally, sieving jobs are only run on

processors that would otherwise be idle. For example,

in [13], the more than 20 year old, �rst collaborative

sieving e�ort that we are aware of, usage is cited of a

�machine idle� tool to identify machines that have not

recently been used and that thus may be added to the

pool of sievers. However, sieving jobs were terminated

instantaneously as soon as a machine was reclaimed,

for instance by hitting a key. See also [10]. In the clus-

ter job scheduling system OAR [4] the possibility to

exploit otherwise idle resources in a similarly volatile

way is created by best-e�ort jobs. With such jobs, par-

tial processing of assigned ranges is systematic, making

extraction of parts of ranges that are left un�nished

mandatory, and resulting in range fragmentation that

quickly becomes unmanageable for humans. A conve-

nient way to fully automate range management � in-

cluding reclaiming ranges from interrupted jobs � was

implemented at INRIA and is described below.

Compared to the sieving jobs, the matrix jobs re-

quire very close supervision. Gaps cannot be tolerated,

and work left un�nished by crashed jobs has to be com-

pleted starting from the most recent checkpoint. Thus,

preferably the matrix is not done using best-e�ort types

of jobs but using supercomputers or relatively large

dedicated (sub)clusters for extended periods of time.

This is what we did for the RSA-768 project, simultane-

ously using various clusters, all with manually managed

jobs, only a small percentage of which were best-e�ort

jobs. In particular during stage 3 of the matrix step

the three participants contributing to that part of the

calculation frequently discussed task assignments, with



8 Thorsten Kleinjung1 et al.

some clusters taking over jobs previously assigned to

others. The matrix step is not further discussed below.

Some details on how and where it was run are listed in

tables 2 and 3.

4.1 AC3

The Australian Centre for Advanced Computing and

Communications provides high performance computing

platforms for academic and research sta� at eight Aus-

tralian universities. A selection of machines is available

for sta� to apply for system units of computing time.

We were allocated computing resources equivalent to

full-time use of 16 nodes of the machine Barossa, a Dell

Beowulf cluster having 155 3GHz dual processor Pen-

tium 4 nodes with 2GB RAM per core. Of this memory,

each node reserves some for the operating system, the

batch queue system, and video sharing. As a result, only

about 1.7GB are available for submitted jobs. Although

less than the ideal 2GB, we submitted jobs restricted to

1.7GB RAM and to 2GB of virtual memory, and these

jobs ran nearly as e�ciently as machines that had the

full 2GB RAM. So, swapping was minimal.

Submission of jobs to Barossa is via the PBS batch

queue system. In addition to the memory restrictions,

a job is only allowed to run for two days or else an au-

tomated program kills the violating submissions. From

a few experiments, we determined how many special q

values could be handled safely under the two day limit.

A simple shell script was used to submit new ranges

while keeping track of what ranges had already been

done. Running of this shell script was done manually on

a daily basis. Moreover, uploading of the data to EPFL

and dealing with the rare occurrences of failed jobs was

also done manually. Participation was cut short when

the Australian participant (Scott Contini) left Mac-

quarie University for a full-time position in industry.

4.2 CWI

At the Centrum Wiskunde & Informatica we utilized

workstations outside the usual o�ce hours. All work-

stations run a recent version of Fedora Linux. The home

and project directories are hosted on the NFS2 �le server

located at SARA (the Academic Computing Centre Am-

sterdam), over a network based on UTP switched giga-

bit Ethernet.

All workstations that participated are x86-64 ma-

chines with varying numbers of cores, clock rates, cache

2 In this section NFS stands for Network File System in-
stead of Number Field Sieve.

sizes and amounts of memory per core. At the outset,

most were single-core machines with 1GB RAM, with

a small number of Intel dual-core machines. During the

sieving, almost all single-core machines were replaced

by dual-core ones, whereas some dual-cores were re-

placed by quad-cores with 2GB RAM per core. We had

120 to 180 cores at our disposal, depending on hardware

upgrades and on users willing to share their worksta-

tions.

After getting a large special q range from EPFL,

we used a script to generate jobs that invoke lasieve
on subranges that a single core can complete within

three to �ve nights or a weekend. All jobs were placed

in the input queue which is located at the NFS �le

server accessible from every workstation. The jobs were

managed and run as follows:

factord. On each participating workstation, the shell

script factord was invoked by crontab after work-

ing hours. It manages the supply of jobs in the fol-

lowing manner:

1. checking existence in the machine's working di-

rectory of a checkpoint �le of a previous job, and

if so re-invoking that job (using sieving task
as described below).

2. fetching a new job from the input queue if a

checkpoint �le is not present;

3. moving output produced by jobs that completed

their range to the output queue;

4. terminating if the input queue is empty;

5. sending a termination signal to lasieve early

in the morning on working days.

Early on in the project, the simultaneous start of

many sieving jobs crashed the automounter dae-

mon on some single-core machines, thereby prevent-

ing lasieve to start. This was solved by randomly

spreading the starting times over a period of half an

hour. When invoked, factord reschedules its next

start. The script is used to manage other factoriza-

tion projects as well.

sieving task. This is a shell script that ensures the
proper start of lasieve. If a checkpoint �le ex-

ists in the machine's sieving working directory, the

script resumes lasieve with the old con�guration,

starting from the last used special q. Otherwise,

sieving task determines the number of available

cores and RAM per core, in order to set proper in-

put parameters for lasieve. On many multi-core

machines we utilized all but one core, keeping one

core available for applications by the workstation's

owner.

monitoring. A monitoring tool was used to check

regular progress of all jobs. If a job is found to be

stalled, for instance due to a user program or hard-
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ware failure, the tool moves all relations from the

machine's working directory to the output queue

and reassigns the remaining special q values to a

new job which is put in the input queue. Once the

host is available for sieving again, it fetches a new

job from the input queue as described above.

4.3 EGEE

The infrastructure provided by the Enabling Grids for

E-SciencE (EGEE, cf. [8]) is the biggest production

Grid infrastructure in the world. It is open to vari-

ous types of scienti�c domains, applications and users.

Typically, scienti�c applications are organized in Vir-

tual Organizations (VOs) and are shared among several

users. Since there was no VO available that would suit

our factoring attempt, we �rst used an existing VO and

later created our own crypto VO.

As we demonstrated in [17] the gLite [9] Grid mid-

dleware that underlies EGEE's job submission and exe-

cution, though suitable for embarrassingly parallel jobs,

focuses on optimizing throughput for many users and

applications rather than for a single application or user.

This is due to a complex interaction of the Grid's meta-

scheduler and each site's local resource management

system, and is compounded by job queue latencies af-

fecting perceived performance, scheduler failures that

cause jobs to vanish (as noted above), and heteroge-

neous hardware causing diverse runtimes. We there-

fore adopted the approach proposed in [17] which inte-

grates in the gLite Grid middleware a runtime-sensitive

BOINC-like system with a task server, as illustrated in

Figure 1. Compared to the traditional way EGEE jobs

are handled, the main advantage of our approach is

that it adapts automatically to the di�erent runtimes

required on the heterogeneous EGEE worker nodes,

thereby maximizing throughput. The EGEE infrastruc-

ture, thus adapted, was successfully used for several

months, processing up to a thousand ranges in parallel

at more than 20 sites across Europe.

The overall work�ow included the following software

components.

siever-submit.pl. This perl script uses the gLite

job submission command line interface to submit

siever-worker.pl jobs to the gLite resource bro-
ker (Step 1a in Figure 1), which for each job se-

lects a suitable worker node (depending on required

RAM) and submits it there for execution (Step 1b

in Figure 1). As long as a certain con�gurable min-

imum number of running jobs is not reached (we

used from 100 to 1000 parallel jobs; once running,

jobs may abort due to failure or because they exceed

their maximum runtime), the script keeps submit-

ting new jobs. Additionally, the script monitors how

many jobs have �nished (Step 6 in Figure 1) and dis-

plays the status on a webpage (Step 7 in Figure 1).

siever-worker.pl. This is an (in principle) ever-

lasting perl script that runs on a worker node and

that

1. attempts to obtain a range of special q values by

submitting an HTTP request to the task server

(steps 2 and 3 in Figure 1);

2. terminates if no range was received;

3. runs lasieve on the range obtained (Step 4 in

Figure 1);

4. upon completion of the range, noti�es the task

server and transfers the results of the calculation

to a Grid storage element (step 5a and 5b in

Figure 1);

5. returns to Step 1.

Because several EGEE job submission systems limit

job runtimes to 24 hours, the script (and thus its

most recently spawned lasieve job) may be termi-

nated, giving rise to assigned but un�nished ranges.

Taskserver.pl. The task server is initially loaded

(Step 0 in Figure 1) with a special q range, parti-

tioned in subranges of length 1000. If noti�cation of

completion of a range is not received within some

�xed period of time (say, one day) after it was as-

signed, the task server returns the entire range to

the pool. No attempts were made to avoid recom-

putation of data by analyzing partial output �les to

extract unprocessed subranges.

The task server has an HTTP interface for task as-

signment and management and, since the task server

keeps track of completed ranges, to determine which

output �les have been uploaded to the Grid stor-

age element. Internally, the task server uses a re-

lational database management system back-end to

manage tasks (start date, maximum allowed run-

time to avoid zombie tasks, end date, etc.).

gLite StorageElement: This is a regular Storage

Resource Manager (SRM) based Grid storage sys-

tem that securely and reliably stores result �les.

4.4 EPFL

EPFL DIT. Of the various computing resources pro-

vided by EPFL's Domaine IT (Central IT services),

the Callisto cluster and the campus grid �Greedy� con-

tributed to the sieving. Callisto is a general-purpose

cluster, usable by EPFL researchers; Greedy is EPFL's

desktop grid (also known as a campus grid), meant to
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gLite client so,ware 

siever‐submit.pl 

gLite Resource 
Broker 

gLite client so,ware 

gLite Storage 
Element 

gLite client so,ware gLite client so,ware gLite client so,ware gLite client so,ware 

siever‐worker.pl 

1a) Submit jobs  

1b) Submit jobs  

4) Process range 

5b) Uplo
ad result

 

6) Monitor and  
resubmit jobs 

7) Display job status 
Web 
server 

0) Register task  
              range 

siever‐worker.pl siever‐worker.pl siever‐worker.pl siever‐worker.pl 

TaskServer.pl 

Fig. 1: Job submission and execution infrastructure are based on gLite (components indicated by italic font). The controlling
script siever-submit.pl generates sieving jobs which are executed on nodes of the various EGEE clusters.

enable recovering unused CPU power. Table 3 lists some

of the hardware speci�cations for both systems.

Callisto is served by two front-end nodes, also acting

as �le servers for an 18TB General Parallel File System

(GPFS). Behind the two front-ends sit 128 dual quad-

core compute nodes, interconnected via a fast Dual

Data Rate (DDR) In�niBand fabric. All the compute

nodes are running SuSE Linux 10.2, and job scheduling

is done with PBS (�Portable Batch System�) Pro 10.

For the sake of energy consumption and ease of ad-

ministration, the compute nodes are in �blade� format:

a single chassis can host up to 14 blades, leading to

higher electrical e�ciency and less cable clutter behind

the racks. Furthermore, in an e�ort to relieve the air-

cooling infrastructure, the cluster is installed in water-

cooled racks, with almost no heat dissipation into the

machine room air. At the start of the sieving, access to

Callisto was free, though closely regulated with a focus

on parallel jobs that can pro�t from the fast intercon-

nect. In 2009 Callisto's access policies were changed, by

requiring laboratories wishing to use the cluster to give

a partial �nancial contribution toward its purchase.

Greedy is the second axis of the computing resources

landscape of DIT (the third being a massively paral-

lel super-computer), with an emphasis on grid comput-

ing and single-core jobs. Access to Greedy is free to

all members of EPFL. The goal of Greedy is to feder-

ate unused CPU power across campus, by harvesting

otherwise unused cycles of classroom and o�ce PCs at

EPFL. In order to not bother the user of the machine

with continuous computations (fan noise can be bother-

some in an o�ce environment), grid jobs can run only

during nights and weekends, when the probability of

having someone working on the machine is low. Addi-

tionally, if user activity is detected while a grid job is

running, the grid job will be suspended.

Greedy uses the software stack Condor [5], a �High

Throughput Computing� middleware. All policies gov-

erning job startups and suspensions are made with Con-

dor mechanisms, without relying on external tools. Be-

sides two centrally-managed servers controlling the grid

infrastructure, more than 1000 compute cores are avail-

able on the grid, mainly from classrooms. Greedy is a

highly heterogeneous environment, with operating sys-

tems ranging from Linux on 32-bit machines to Win-

dows 7 on 64-bit ones, and a variety of combinations

of CPU types and memory amounts. Due to this het-

erogeneity, mechanisms are put in place that select the

proper platform for a given set of jobs, so that they run
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on the operating system/CPU combination they were

compiled for.

EPFL LACAL. EPFL's Laboratory for Cryptologic

Algorithms has a variety of clusters at its disposal. Two

of these clusters (Lacal140 and Lacal304) were used for

the sieving. A third (Lacal672) was used only for the

matrix, as it was purchased when the sieving was al-

ready complete. Table 3 lists some hardware speci�ca-

tions for these three clusters.

Lacal140 is hooked up to a front-end with a 4.2TB

NFS �le system and a 6.1TB Parallel Virtual File Sys-

tem (version 2) provided by 8 IO servers. It is inte-

grated in EPFL's Pleiades2 HPC Linux cluster, run-

ning SuSE Linux 10.2 and using Torque with Maui for

job scheduling. Lacal304 ran Gentoo Linux, and used

a single front-end server that acted as a �le server for

a 1.5TB NFS �le system. Formerly located at EPFL's

Sciences de Base clusterroom, Lacal304 was partially

dismantled with the arrival of the new cluster Lacal672

(cf. below) and 24 of its nodes now serve as the freely

accessible general purpose 192-core cluster VEGA at

EPFL DIT.

The 56 Lacal672 nodes are connected to a single

front-end server that acted before as Lacal304's �le

server (for the 1.5TB NFS �le system that was used

by Lacal304). It was installed, at EPFL's Sciences de

Base clusterroom, while stage 1 of block Wiedemann

was already in progress.

Sieving at EPFL. With the exception of the Greedy

pool, Paul Leyland's cabalc and cabald were used to

run sieving jobs on EPFL's DIT and LACAL clusters.

This is fully described in Section 4.6.

On the Greedy pool Condor jobs are submitted with

parameters for machines with 1GB RAM. Because most

of the workstations on the grid run a Windows operat-

ing system, special binaries were created that do not use

our fast assembly routines. As a consequence, process-

ing a range of length 2000 would take �ve to six hours,

i.e., a bit slower than usual but typically less than a

night. Therefore, jobs with ranges of length 2000 were

submitted to the grid, in batches of 5000 as that would

produce at most 10 gigabytes of data. Transferring the

output to the storage facilities at LACAL was done

manually.

4.5 INRIA

The Aladdin-Grid'5000 (�g5k�) is an HPC grid funded

by several French research institutions, including IN-

RIA, and intended for experimental research. Started

in 2004 it consists of about 5000 CPU cores (taking the

latest hardware upgrades into account there are cur-

rently more than 6400 cores), spread over nine sites

across France. Each site hosts up to �ve clusters of iden-

tical nodes. The g5k clusters used for this project are

listed in Table 3. Nodes at the same site have access to

a shared NFS volume, but no global NFS �lesystem is

shared across the sites.

Access to g5k is not exclusively limited to experi-

mental research projects. Long running, resource-hungry

applications such as sieving are allowed as well, as long

as they comply with the platform's policies for this type

of jobs. Thus we agreed to limit our jobs to at most 25%

of a site's resources at any given time, running at the

lowest priority. In the job submission system OAR [4]

used by g5k these are best-e�ort jobs, as mentioned

above.

Premature termination of best-e�ort jobs is a nor-

mal event. If it occurs it a�ects all nodes allocated to the

job. Noti�cation of termination may never be received.

Furthermore, as alluded to above, due to scheduler er-

rors it cannot be guaranteed that all queued jobs are

eventually taken into execution: sometimes jobs van-

ish. To deal with the range fragmentation that would

result from premature termination, and to avoid frag-

mentation due to jobs disappearing from the queue, a

framework consisting of simple shell and perl scripts

was designed that resulted in a very e�ective and user

friendly range management system. It was successfully

used for about a year, contributing substantially to the

sieving e�ort.

The work�ow described below, as it applied to each

of the g5k clusters that we used, is super�cially similar

to the EGEE work�ow. The details are quite di�erent.

OAR jobs. These are best-e�ort jobs, allocated to the

nodes by the scheduler. The jobs may di�er in the

number of nodes targeted, but are otherwise identi-

cal and carry no information about the calculation

to be performed. The number of OAR jobs that can

be submitted at the same time is limited because,

due to our best-e�ort constraint, in total never more

than 25% of the nodes may be used, and because

the job scheduler performs suboptimally if there are

many jobs in the queue (recent software upgrades

have improved it). More down-to-earth, the web-

based grid occupancy visualization tool uses one line

per job irrespective of the job's size: if many siev-

ing jobs are displayed negative feedback can be ex-

pected. To deal with these issues, and to make sure

that we always had jobs small enough to ��t in the

holes�, we submitted OAR jobs that allocate n/2,

n/4, n/8, n/16, and n/16 nodes, where n is a quar-

ter of the number of nodes at the site, targeting a

total of n nodes.
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An OAR job starts one core job on each CPU core

of the nodes it had been given access to. Upon (ex-

pected) interruption of OAR jobs, a new one needs

to be submitted to sustain the throughput. The

required functionality of resubmitting interrupted

jobs is provided by the OAR scheduler: so-called

�idempotent� jobs, if they are left un�nished, may

be restarted with the same command lines. Given

our generic OAR jobs it thus su�ced to set their

time limit to in�nity (actually, one week), with the

result that the scheduler made them persistent. As

a result we did not have to rely on scripts that au-

tomatically submit jobs and that, in our experience,

often lack the robustness they should have (due to

communication glitches and time drifts).

Core jobs. All core jobs, over all nodes and all OAR

jobs on the same cluster, are identical. A core job

is an (in principle) everlasting shell script that se-

quentially performs the following steps.

1. It attempts to obtain a range of special q val-

ues that does not intersect with any other range

that has been completed or that is currently un-

der execution.

As di�erent core jobs may make concurrent re-

quests for ranges of special q values, range al-

location must be atomic. Because �le renaming

(moving) on an NFS partition is atomic, ranges

may be claimed by a core job by trying to move

a �le containing a range from the queue/ di-

rectory to the inprogress/ directory. Per �le

the move is guaranteed to succeed for exactly

one core job, which gets the claimed range. Core

jobs that fail to move a �le sleep for a couple of

seconds before trying again.

The queue/ directory contains ranges to be pro-

cessed encoded in names of otherwise empty �les,

allowing for convenient sequential processing of

the available ranges assuming �les are claimed in

lexicographic order. Obviously, di�erent clusters

receive non-intersecting ranges.

2. It terminates if no range could be obtained.

3. It runs lasieve on the range obtained.

4. Upon completion of the range, it marks the out-

put as clean.

If a call to lasieve terminates because it �n-

ished the assigned range, the core job compresses

the output created in the directory working/,
moves it to results/, and removes the corre-

sponding �le from inprogress/, thereby mark-

ing that output as clean.

5. It returns to Step 1.

Although a core job is not meant to terminate (ex-

cept on range starvation), it dies as soon as the

scheduler decides to abort the best-e�ort OAR job

that spawned it. Abrupt termination during execu-

tion of lasieve was handled as described below.

Watchdog job. The working/ directory will contain

partial output �les of interrupted lasieve jobs,

along with still active output �les. The watchdog

job identi�es output �les that have not been touched

for longer than reasonable if its lasieve job were

still alive (say, for 15 minutes, which is 5 to 10

times more than the expected delay between sub-

sequent writes). It analyses each of these partial

output �les, returns the unprocessed part of the

range to the queue/ directory, renames and com-

presses the output �le (possibly after truncation) so

its name re�ects the processed part of the range,

moves it to the results/ directory, and removes

the corresponding �le from the inprogress/ di-

rectory. Due to the lightweight approach of encoding

ranges in names of empty �les the �le system could

easily cope with the range fragmentation.

This approach makes sure that, eventually, all spe-

cial q values assigned to the cluster are processed,

without human supervision. All that needed to be

done was keeping an eye on the queue/ directory

to make sure that there was an adequate supply of

ranges. The I/O and CPU footprint of the watch-

dog job are not signi�cant, so it could be run on the

submission front-end.

Data movement. Storage nodes on g5k are not meant

to host large amounts of data. Results were there-

fore regularly copied from g5k to INRIA Nancy,

where several partitions totaling 13TB were used

for storage and backups. Relations were assembled

to larger �les corresponding to ranges of length e.g.

106 (about half a GB compressed), checked for cor-

rectness, and copied to EPFL.

4.6 Leyland

In comparison with the computation as a whole, Ley-

land's sieving contribution was relatively minor. At any

one time at most 25 machines, most of them dual-core

systems, were in use. Accordingly a relatively simple

client / server harness was used to allocate special q

ranges and a simple script used to automate uploading

the results to an sftp site located at EPFL. Monitoring

of progress, detection of error conditions and recovery

from them was performed manually. The scripts run-

ning on the client and server side are named cabalc
and cabald, respectively, because they were developed
for the factorization of 2773+1 in 2000 by a team using

the nom-de-plume `The Cabal' [3], some of whom con-

tributed to the factorization of RSA-768. The scripts,
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described in more detail below, were also used for the

sieving on the clusters at EPFL DIT and LACAL.

cabalc. cabalc uses a con�guration �le to specify

the IP address of the machine running its cabald;
the port on which to communicate; and a proto-

typical command to be run. It can execute an ar-

bitrary command with parameters derived from a

pair of numbers provided by cabald, allowing it to
correctly run lasieve for any range of special q

values.

Upon start, cabalc clears a Boolean `work-to-do'

variable, reads the server's address and port from

the con�guration �le and enters an endless loop.

There, it �rst attempts to open communications to

the server. If nothing is forthcoming, cabalc waits

for a few seconds and tries again. If `work-to-do' is

clear a request is made of the server for a special

q range. The range is stored and `work-to-do' set.

The command given in cabalc's con�guration �le

is then run with proper command line arguments to

process the newly received range. When that sub-

process completes, cabalc returns to the start of

its endless loop. This time around, `work-to-do' is

set so the saved initial and �nal values of the com-

pleted range are returned to cabald before a new

task is requested.

cabald. cabald maintains a con�guration �le which

contains a list of special q values which have been

allocated to clients; one or more pool lines to spec-

ify unallocated special q values; a list of zero or more

fragments; a single value, blocksize, which spec-
i�es the maximum special q range to be allocated

to each client; and the network port on which it

communicates to its clients. Initially, there are no

fragments and a single pool containing a large

special q range. A �nal set of lines contains infor-

mation about which special q ranges have been al-

located to clients by earlier invocations of cabald.
When cabald starts it reads its con�guration �le

and creates a data structure which contains one or

more ranges (lower and upper limits) of special q

values which have not yet been allocated. Under

normal circumstances, this would be a single range

given by a pool line. Very occasionally, a second

such line would be added to the con�guration �le

when the existing pool was close to exhaustion. A

more frequent occurrence would be after one or more

clients had crashed. In this situation, the cabald
process would be stopped, the unsieved special q

ranges extracted from partial output �les and added

to the server's con�guration �le as fragment lines.

Any corresponding allocation lines in the con�gu-

ration �le would be deleted. Upon restart, cabald

also places the fragment data into the unallocated

tasks data structure. cabald then opens a log �le

for appending status messages and enters an endless

loop waiting for cabalc client requests.

On receipt of a client communication, the returned

special q values are used to update the unallocated

tasks structure. A new range of special q values, of

size at most blocksize, is then sent to the client.

Allocation is made from the pool(s) only when all

the fragments have been exhausted. The log �le

is then updated with an entry which records the IP

address of the client, the special q values, if any,

returned by the client and the special q range just

allocated. Finally, the cabald con�guration �le is

re-written so that the current state of the pool
and/or fragments is available for subsequent runs
of cabald.
The script cabald was very stable. It never crashed

unexpectedly and was stopped only for scheduled

system shutdowns or for maintenance of its con�gu-

ration �le when fragments or a new pool were added.

monitoring. As noted above, cabald and cabalc
provide neither detection of errors nor uploading of

output data. The latter was performed by an up-

loader script which compressed all but the most

recently modi�ed lasieve output �le (on the as-

sumption that the latter was still being written by

an active lasieve); uploaded the result to a �xed

directory of a sftp server at EPFL; and then moved

the compressed �les to another directory where they

could be recovered if necessary and yet not interfere

with subsequent activity.

At sporadic intervals, usually once a day or so, the

machines supposed to be sieving would be examined

to see whether they were in fact doing so. A trivial

script was written to contact all machines in the set

of clients and to determine whether lasieve was

running the correct number of times (a multi-cored

system usually ran several copies). If a client failed

to respond or if they were not sieving the situation

would be investigated by hand. First, the uploader

script would be run. Any remaining output �les were

examined to determine the special q at which the

siever failed. Finally, cabalc was restarted.

Despite not being fully automated, the scripts cabalc
and cabald between them allowed one person (Ley-

land) to manage several dozen siever instances with

little e�ort. That the same scripts also worked satis-

factorily to manage hundreds of sieving jobs at EPFL

is probably due to the fact that there we restricted our-

selves to stable resources fully dedicated to the sieving.
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4.7 NTT

Nippon Telegraph and Telephone Corporation provided

the following computational resources that were fully

dedicated to the sieving:

� 113 Pentium D 3.0GHz (amd64) + 2GB RAM3;

� 32 Pentium 4 (Northwood) 3.2GHz (i386) + 2GB

RAM4;

� 2 Pentium 4 (Prescott) 3.6GHz (amd64) + 2GB

RAM;

� 1 Pentium 4 (Northwood) 2.8GHz (i386) + 2GB

RAM;

� 2 Athlon 64 2.2GHz (amd64) + 3GB RAM;

� 2 Opteron 2.0GHz (amd64) + 4GB RAM;

� 8TB of storage via NFS.

The nodes are connected with gigabit Ethernet and

each node is equipped with a local disk. To manage

sieving assignments we used two perl scripts that were

also used during the sieving for M1039 [1]: ds2c on the

client side and ds2 on the server side.

ds2c. For each client on which it is running, the script

ds2c requests a special q range from the server, and

runs lasieve while recording its standard input,

error and return values. After lasieve �nishes its

assigned range, ds2c sends all resulting data to the

server and requests a new range. When ds2c can-

not connect to the server, lasieve is invoked with

a range of special q values that is randomly cho-

sen from a range previously communicated by the

server.

ds2. The server script ds2 has an interface that al-

lows a human operator to provide a new range of

special q values, typically of length 1 000 000. Upon

request from a client, ds2 assigns to the client a

subrange, typically of length 1000 as a range of that

size can be processed in a few hours. If a client does

not report back within, say, 8 hours, its range is

reassigned. At any time the operator may change

priority of range assignments. Data corresponding

to a range that is reported back are stored. The

server may also receive data for ranges other than

those it assigned; occasionally, correctness of such

spurious data is veri�ed manually. Logging mecha-

nisms are in place to allow recovery from mishaps

(or scheduled maintenance).

Although these two scripts can deal with many excep-

tions, they are unable to detect a full disk. Every work-

ing day manually invoked scripts and commands are

3 These nodes got more RAM for the matrix step (cf. Ta-
ble 3), resulting in 5GB RAM for most nodes (13 nodes got
8GB RAM). Further details can be found in [2].
4 One of these nodes broke down during the sieving. It was

not repaired.

therefore run to con�rm client node status, to merge

any duplicate assignments, to roughly con�rm the con-

sistency of all data stored by ds2, to compress the data,

and to send them to EPFL.

4.8 University of Bonn

At the University of Bonn sieving took place at only

one location, the Himalaya cluster at the Institute for

Numerical Simulation. On this cluster jobs have to be

submitted via a queueing system. This was done us-

ing a simple C-program. It checked periodically how

many sieving jobs are in the queue and, if this number

is below a certain threshold, it submitted new jobs. All

problems and inconsistencies, caused by jobs that were

never taken into execution, jobs that crashed, etc., were

resolved manually.

5 Conclusion

We described the heterogeneous hardware resources and

diverse management tools used during a period of about

two years at many di�erent locations to solve a crypt-

analytic challenge. The computational e�ort required,

though large given the resources available, was consid-

erable though not exceptionally large: it would require a

couple of weeks using the full �Ranger� supercomputer

at the University of Texas at Austin.

Our result is a good indication for the size crypt-

analytic e�ort that can successfully be undertaken in

a more or less acceptable amount of time by a rather

loosely coupled, widely scattered and mostly academic

team of volunteers. Pulling o� a substantially larger ef-

fort in comparable or less time would require tighter

management or more funding than customary in aca-

demic cryptanalytic circles. A greater appreciation of

the HPC community for cryptanalytic activities could

change this picture overnight.
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