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Abstract—Being able to detect anomalous electricity consump-
tion events in residential buildings is one of the main steps when
reducing unnecessary energy usage. In this paper, we present an
unsupervised approach for detecting such kind of events locally
at individual households, while leveraging the knowledge from
other households and ensuring the privacy of the consumption.
This is realized by learning a model locally on the households’
edge devices for on-the-edge anomaly detection, using federated
learning to leverage the knowledge from other households and
ensure the privacy of the training data, and using a secure
aggregation approach to handle model weight updates, protecting
against a malicious central server and avoiding the risk of model
inversion attacks. The approach has as advantages that it respects
privacy, does not require annotated data, circumvents the cold-
start problem, and is flexible with respect to detecting different
types of occurring anomalies. We demonstrate its effectiveness
on a real-world, highly granular electricity consumption dataset
comprising 14 Belgian households during a period of 36 months,
and show effectiveness by installing malfunctioning devices in a
lab environment.

I. INTRODUCTION

Just about every new (IoT) device entering the market is
in one way or another connected to its environment. These
devices generate vast amounts of data which are in turn
used for a plethora of use cases with the help of advanced
machine learning techniques. Over the past years, this data
collection has risen and so do the privacy concerns about
this information, especially if the data was collected in a
centralized storage in order to use it for the training or
inference of machine learning models.

An interesting approach to limit the amount of raw and
possibly privacy-sensitive (or confidential) data needing to be
treated centrally, while reducing bandwidth requirements and
enabling cross-device learning in highly distributed environ-
ments is Federated Learning [1]–[4]. In this approach, instead
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of collecting the data in a centralized fashion, a model is
trained locally on each device and only the model parameters
are shared with a central server. That server combines the
individual model parameters to derive a global model, whose
parameters can be further pushed back to the different devices.
Subsequently, the local models can be further updated, the
model updates can be shared with the server to update the
global model, and this model further shared with the different
devices. However, it is important to stress that model updates
can also leak some amount of private data which could be
exploited by an attacker (cf. [5], [6]). Further, when using
federated learning in real-world use cases, the central server
has access to all possibly privacy-sensitive model updates
which implies some level of trust.

All privacy concerns related to sensitive user-data can be
mitigated if the model updates are encrypted by the data owner
before they are sent to an external party. This ensures that only
the legitimate data owner can access the data by decrypting
it using its private decryption key. However, this form of
encryption limits the possibility to outsource computations
since the external party will not have access to the decryption
key. Performing such computational tasks is often crucial to
the business value of cloud services.

Such privacy concerns often result in the slow wide-
scale adoption and acceptance of these new data processing
technologies but provide opportunities for advances in the
research area of privacy-enhancing technologies. In this paper,
we present a privacy-preserving federated learning technique
applied to a real-world electricity consumption data. With our
approach, we are able to detect malfunctioning appliances in
private households, without sharing any privacy-related data:
neither during the model training nor the inference phases.
This is realized by handling the model weight updates in
a privacy-sensitive manner using a secure aggregation ap-
proach [7]. Furthermore, our approach overcomes the so-called
cold-start problem [8]: in order to detect anomalies, only a
few weeks of data is needed compared to long-time training
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requirements from single-source machine learning models.

II. PRELIMINARIES AND RELATED WORK

Optimization of electricity consumption in public or cor-
porate buildings is an active research field due to the rising
interest in low or even zero-energy buildings. This led to an
increased interest for the detection of malfunctioning electrical
devices since these often waste energy. An extensive review
by Himeur et al. [9] describes the most commonly used tech-
niques for detecting abnormal electricity consumption data.
While most studies on anomaly detection focus on energy
theft of defective meters, Rashid et al. [10] propose the Rimor
approach that focuses on detecting contextual anomalies by
comparing a forecasted consumption to the actual one. They
validate their approach on public aggregated consumption data
with additional weather information about temperature and
humidity.

Predicting future electricity consumption and warning on
significant deviation is one way of detecting anomalies. Fore-
casting the short-term electricity load at individual households
is a well-known problem that is extensively studied in the
smart grid domain: see e.g. the overview by Lopez-Martin
et al. [11]. The use of federated learning approaches [1]–
[4] enabling to process the individual consumption values
locally at each household’s smart meter and resulting in less
bandwidth-intensive and more privacy-friendly solutions is
very recent. Taı̈k and Cherkaoui [12] are among the first ones
to investigate such a setting, for which they consider a Long
Short-Term Memory (LSTM) neural network [13]. Interest-
ingly, Savi and Olivadese [14] propose a similar approach, but,
in addition to using the previous electricity consumption data
for a household, they also consider in their LSTM model the
consumption data from similar days at the same hour for that
household and other calendar and weather-related features. To
that end, the authors use a publicly available dataset with (after
preprocessing) 1500+ households in London, from Nov. 2012
to Feb. 2014, enriched with weather information and including
demographic characteristics of the considered households.
Individual models are built for each demographic category
present in the data, as well as for similar types of households
derived in a data-driven fashion. These models are evaluated
against a model derived from a fully centralized approach.
The federated and centralized models perform similarly when
considering the demographic categories, and the federated
models perform slightly better when considering the data-
driven categories.

Finally, the problem of computing meaningful operations
on encrypted data in order to address privacy concerns was
already introduced in the late 1970s by Rivest et al. [15].
However, it took until 2009 before a concrete instantiation
was found by Gentry [16] in the form of a fully homomorphic
encryption (FHE) scheme. Such a scheme allows an untrusted
party to carry out arbitrary computations on encrypted data
without learning anything about the content of this data.
The key to allowing arbitrary computations is that an FHE
scheme allows both homomorphic addition and multiplication

operations on the encrypted data. Previous homomorphic en-
cryption schemes were partially homomorphic, i.e. they only
provided one of the two operations and therefore were not
fully homomorphic. Although these generic techniques allow
one to compute any function in a privacy-preserving manner,
they are often too slow in practice. Dedicated techniques to
compute one specific algorithm or function are often crafted
to make the privacy-preserving solution significantly faster.

III. DETECTING ABNORMAL ELECTRICITY CONSUMPTION

Electricity consumption data with high temporal granularity
is not only highly personal but also very context dependent.
It is influenced by the time people get up and go to bed,
and might change dramatically over time, for example when
a newborn is in the house or a whole society goes into lock-
down. Nevertheless, common patterns can be observed across
different households and by applying federated learning, these
patterns can be captured in a shared model.

A. Data Characteristics and Context

In order to outline, test and verify the presented approach,
we use a real-world dataset provided by Engie Laborelec. This
data is composed of per minute electricity consumption for
14 Belgian households during a period of 36 months, from
Sept. 2017 until Sept. 2020. This data originates from the
smart meters installed at those households, reporting on the
overall electricity consumption in each household separately.
The smart meters are connected to a Raspberry Pi acting
as a gateway and being used for research purposes. In the
context of the present research, each Raspberry Pi is seen as
an edge node with the capability of performing some limited
computations.

B. Data Processing

In order to ensure a reliable anomaly detection, three
preprocessing steps are performed on the edge nodes: (1)
discretization in a streaming fashion, (2) mode decomposi-
tion, and (3) normalization across households in a streaming
fashion.

Firstly, as the electricity consumption levels of the H
different households can vary significantly, the electricity
data used is normalized in order to train a common model
across those households. Let us denote the total electricity
consumption data for a specific household h from time t′ to
t as Eh(t − t′). In a first step, a temporal binning is used
such that one can sum the data over an overlapping window
of length w with stride ws; when using ℓ data points, this
results in M = ⌊(ℓ− w)/(ws)⌋+ 1 temporal bins.

Secondly, electricity consumption of private households
shows temporal variations at different scales. For instance, one
can observe strong seasonalities as the overall consumption is
typically higher in winter than in summer. Similarly, one can
also observe daily patterns reflecting the personal situation of
the inhabitants. Additionally, several appliances like refriger-
ators or heat pumps exhibit specific repeating consumption
fingerprints. While these patterns are predictable, stochastic



Fig. 1. Architecture of the reconstruction local model with two convolutional
layers visualized with [21]. The discretized, decomposed and normalized input
data X of dimension daily temporal bins M × modes K is reconstructed to
X̂ with the same dimension and reconstruction loss ϵ.

contributions occur on the short-term due to spontaneous
actions.

In order to model these different layers of periodic and
stochastic contributions, we split the binned consumption
signal in different modes by using Variational Mode Decompo-
sition (VMD) [17]. This has been successfully used already in
different contexts, e.g. for fault detection and diagnosis in wind
power gearboxes [18] and for harmonic detection in power
grids [19]. The decomposition is applied to separate binned
daily consumption data Eh(m), 0 ≤ m < M , into K > 1
modes Ẽh(m, k), 1 ≤ k ≤ K representing repeating patterns
at different time scales, such that Eh(m) ≈

∑K
k=1 Ẽh(m, k),

for 0 ≤ m < M .
Thirdly, in order to make the temporally binned and de-

composed data comparable across different households, a
minmax-normalization, mapping the maximal value to 1 and
the minimal value to 0, is performed. This is applied in a
streaming fashion by calculating over a window W ≫ w,
the maximal and minimal consumption per mode k, denoted
as ẼW,max

h (k) = maxW≤m≤t Ẽh(m, k) and analogously
for ẼW,min

h (k). This allows us to define the discretized,
decomposed and normalized consumption per household as
EW

h (t−w, k) =
Ẽh(t−w,k)−ẼW,min

h (k)

ẼW,max
h (k)−ẼW,min

h (k)
, which is used as input

for our reconstruction model.

C. Local Learning

The daily consumption patterns are reconstructed using a
convolutional autoencoder as illustrated in Fig. 1. Such an
autoencoder transforms an input signal X ∈ [0, 1]M×K , where
M is the number of daily temporal bins and K the number of
modes, to a reconstructed copy X̂ with reconstruction error
ϵ with respect to a predefined loss function l(X, X̂) = ϵ.
The input signal X is first encoded and compressed using
two convolutional layers per mode to dense layer. Next,
this is upsampled via two additional convolutional decoder
layers to the reconstructed signal X̂ . A general overview of
convolutional autoencoders can be found in [20].

D. Global Learning

The overall model architecture for the global, federated
model is the same as the one described above in Section III-C
for the local model. Instead of training the model weights on
the locally available data only, a federated training approach
is used. The updates are performed in a federated fashion
similarly to the FedSGD approach proposed in [22]. First, the

model is initialized at the central server with random weights
and these weights are shared with the local devices at the
H households. On each local device, the model is trained
but only for one epoch. The local weights and their gradients
per household are communicated to the central server. There,
the local weights of the encoding part of the autoencoder
up to the dense layer are averaged, while for the remaining
layers for decoding the signal from the dense layer to the
final output signal, the gradients of the weights are averaged.
Then, the averaged weights and gradients are sent back to the
local device, where the new model weights for the decoding
layers are calculated. With this approach, the encoding layers
are trained in common while for the decoding layers, device
specific contributions are better reflected.

While such a federated learning approach has the benefit of
not requiring to share the raw electricity consumption values,
it is still possible to derive some private information through
a model inversion attack [5], [6]. For this reason, we further
add an additional security layer to our approach as discussed
later in section III-F: the goal is to protect the local gradients
per household such that these model inversion attacks on
individual households are not possible anymore.

E. Anomaly detection

Once the model is trained for a certain time period pattern
the abnormal electricity consumption is detected by computing
(ÊW

h (0, k), . . . , (ÊW
h (24 − w, k)). Next, the reconstruction

error, given by l(X, X̂) = (X − X̂)2, is calculated. The
daily pattern is considered to be an outlier or anomaly if for
any of the K modes the reconstruction error is bigger than
the rolling mean plus three times the standard deviation of
the reconstruction error. The practical parameters and results
applied to the electricity consumption data are discussed in
Section IV-B.

F. Privacy-Preserving Aggregation using Shares

A conceptually simple yet efficient method for privacy-
preserving aggregation was recently presented in the scope
of demand side management of residential loads [7]. This
approach circumvents the usage of generic but computationally
expensive privacy-preserving techniques. The idea behind it
stems from the cryptographic research community and consists
in working with multiple shares [23] in order to split-up and
obfuscate the data, and recombine it when needed. All but
one of the shares are communicated in plain text while the
last share is encrypted. This allows certain computations on
the plain shares without revealing information as long as these
computations preserve the way the data is obfuscated. Assume
we have H > 1 households that would like to communicate
the gradients of their model weights ghi per epoch i to a
central server, but the server should only know the aggregated
value gi =

∑
h g

h
i (as described in section III-D) and should

not learn any information about the individual values ghi .
First, the server generates in a setup phase a public/private
key pair; this public key is provisioned securely to each
individual client. Next, each client masks its privacy-sensitive



gradient of the model weights ghi by sampling a uniform
random value rhi , of the same size of the domain where
the gradient ghi is from, and additively splitting ghi into a
pair of shares (p1,hi , p2,hi ) = (rhi , g

h
i − rhi ). This means that

the gradient ghi can be reconstructed by summing the two
shares p1,hi + p2,hi = ghi . Moreover, a single share provides
no useful information on ghi and is information-theoretically
secure. One of the shares (say, p2,hi ) is encrypted using the
pre-provisioned public key, resulting in chi = ENC(p2,hi ), and
the pair (p1,hi , chi ) is communicated to an untrusted third party
which we will denote by U . This introduction of an additional
party is a disadvantage of this approach. However, the only
requirement of this third party is that it does not collude with
the central server that computes the final result and issues the
cryptographic keys. When U receives the H pairs (p1,hi , chi ),
for h ∈ [1, H], it cannot compute gi from these pairs. It can,
however, sum the plain shares p1,hi and forward the result
and the H encrypted shares to the aggregation server, i.e.
(s =

∑
h p

1,h
i , c1i , c

2
i , . . . , c

H
i ). Finally, that server can decrypt

the individual chi values but cannot learn anything from them
since DEC(chi ) = p2,hi = ghi − rhi , for h ∈ [1, H], which
means the original values ghi are masked. However, adding
all the decrypted values to s results in s+

∑H
h=1 DEC(chi ) =∑H

h=1 r
h
i +

∑H
h=1(g

h
i − rhi ) =

∑H
h=1 g

h
i , as desired. This

allows us to aggregate the gradients of the model weights
when training the global model in both a privacy-preserving
and federated fashion.

IV. BENCHMARK AND DISCUSSION

For both the local and global training scenarios, we use
K = 3 different modes (see Section III-A) in order to capture
behaviors which occur with varying frequency, as discussed
in section III-B. Moreover, we use the data for one day as
input. This means ℓ = 1440 data points, corresponding to the
minutes per day. Using a rolling window of size w = 3 with
stride ws = 1, this results in M = 767 temporal bins for each
of the K = 3 modes.

A. Training and Evaluation Data

We train and evaluate our approach on a real-world dataset
provided by Engie Laborelec as described in Section III-A.
For this, the discretized, decomposed and normalized data of
the households is split into a training set and a test set of
two years and one year, respectively. The data of one of the
households was used in order to simulate defects and malfunc-
tioning devices. For this, the normal consumption data of two
consecutive days during the test year was replayed in Engie
Laborelec’s Home Lab. This Home Lab is a true-scale testing
facility built to represent a range of residential units, with
three-phase and mono-phase power supplies. These functional
replicas of actual homes are equipped with standard electrical
cabinets and head metering features, both conventional and
smart, coupled to production and load emulators. The electrical
cabinets are a plug and play feature where different equipment
can be connected. It is possible to replay a consumption profile
through the use a generator acting as a load for simulated

Fig. 2. Logarithmic distribution of daily mean squared reconstruction error of
local (left) and federated (right) models for a test data set for the two modes
(from top to bottom).

residential unit. In addition, other equipment can be added in
parallel to the simulated consumption profile to generate an
anomaly.

Different type of anomalies were generated: the addition
of a low consuming defective equipment adding a small
constant load as well as the addition of a defective boiler. This
defective boiler dissipates heat faster than it should, therefore
increasing the heating cycles of its water. On the selected
data we validate our federated and unsupervised approach
for detecting abnormal electricity consumption. In that case,
before preprocessing the data, the actual consumption of the
two days is replaced by the data created with defect boiler
or heating device by replaying the energy consumption in the
Home Lab and adding the anomalies and recording the new
energy consumption profile.

B. Local Results

In the local setting every household uses only its own local
data for training the model. Inherently, this means there are
no privacy concerns since neither the training data nor the
inference data leave the edge node. Using the correspond-
ing test dataset consisting of valid data for each household
we evaluate how well the model is reconstructing the daily
patterns by calculating the mean squared error between the
original patterns and the reconstruction for each mode. These
local results for the first and second VMD mode are displayed
in the left part Figure 2. For our further analysis, we will
concentrate on these two modes as they allow us drawing
conclusions on either global electricity increase or electricity
usage of devices with very regular short-term pattern. This
figure clearly shows that the vast majority of the local test
data is reconstructed correctly (note the logarithmic scale on
the y-axis). However, a non-negligible part of the test data set
has a mean squared error > 0.02 in the two modes.

C. Global Results

The data from multiple households is used to train the
models using the federated learning approach while com-



Fig. 3. The reconstruction error when using data with abnormal behavior in
the global evaluation setting for the two modes.

municating the per household local gradients in a privacy-
preserving manner. The right part of Figure 2 shows the re-
construction error for the same household as used to illustrate
the local approach. The results are significantly better. For the
two modes, virtually all data is reconstructed with a mean
squared error significantly smaller than 0.02, demonstrating
the added value of using the global setting. Figure 3 shows
the results for the two modes in the global setting on the
abnormal data. This figure shows the reconstruction error for
the various scenarios for the slowly changing (top) and higher
frequency (bottom) mode, respectively. One can see how the
base load influences the slowly changing VMD mode with
the reconstruction error being significantly higher for these
cases (left). For the malfunctioning heating the reconstruction
error in the higher frequency mode exceeds the threshold
(middle and second from right). For the reference curve
(right), the actual consumption for these two days, we see
that reconstruction error falls nicely into the distribution of all
other errors.

V. CONCLUSIONS

In this paper we showed that combining electricity con-
sumption data from multiple households improves the accu-
racy of detecting malfunctioning home equipment, and showed
how to overcome potential privacy implications when training
these models. For this, we used federated learning approaches
where the models are trained locally and which use a technique
based on multiple shares for aggregating the model informa-
tion centrally in a privacy-preserving fashion. We combine
all these elements into a practical and privacy-preserving
approach for detecting anomalous electricity consumption
events in residential buildings. In addition, we showed that the
federated models capture consumption patterns better than the
local models (as shown in Fig. 2), and that for newly installed
smart meters (cold start problem) our approach enables to
reliably detect abnormal electricity consumption for heating
as well as for weak and strong base loads.
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gradients-how easy is it to break privacy in federated learning?” Ad-
vances in Neural Information Processing Systems, vol. 33, pp. 16 937–
16 947, 2020.

[7] E. J. Palacios-Garcia, J. W. Bos, X. Carpent, and G. Deconinck, “A
privacy-friendly aggregation algorithm for demand side management of
residential loads,” in ISGT Europe. IEEE, 2021, pp. 1–5.

[8] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock, “Methods
and metrics for cold-start recommendations,” in Research and Devel-
opment in Information Retrieval, ser. SIGIR ’02. Association for
Computing Machinery, 2002, p. 253–260.

[9] Y. Himeur, K. Ghanem, A. Alsalemi, F. Bensaali, and A. Amira,
“Artificial intelligence based anomaly detection of energy consumption
in buildings: A review, current trends and new perspectives,” Applied
Energy, vol. 287, p. 116601, 2021.

[10] H. Rashid, N. Batra, and P. Singh, “Rimor: Towards identifying anoma-
lous appliances in buildings,” in Systems for Built Environments, 2018,
pp. 33–42.

[11] M. Lopez-Martin, A. Sanchez-Esguevillas, L. Hernandez-Callejo, J. I.
Arribas, and B. Carro, “Novel data-driven models applied to short-term
electric load forecasting,” Applied Sciences, vol. 11, no. 12, p. 5708,
2021.

[12] A. Taı̈k and S. Cherkaoui, “Electrical load forecasting using edge
computing and federated learning,” in ICC, 2020, pp. 1–6.

[13] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 11 1997.

[14] M. Savi and F. Olivadese, “Short-term energy consumption forecasting
at the edge: A federated learning approach,” IEEE Access, vol. 9, pp.
95 949–95 969, 2021.

[15] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and
privacy homomorphisms,” Foundations of secure computation, vol. 4,
no. 11, pp. 169–180, 1978.

[16] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in 41st
ACM STOC, M. Mitzenmacher, Ed. ACM Press, May / Jun. 2009, pp.
169–178.

[17] K. Dragomiretskiy and D. Zosso, “Variational mode decomposition,”
Signal Processing, vol. 62, no. 3, pp. 531–544, 2014.

[18] Z. Wang, G. He, W. Du, J. Zhou, X. Han, J. Wang, H. He, X. Guo,
J. Wang, and Y. Kou, “Application of parameter optimized variational
mode decomposition method in fault diagnosis of gearbox,” IEEE
Access, vol. 7, pp. 44 871–44 882, 2019.

[19] G. Cai, L. Wang, D. Yang, Z. Sun, and B. Wang, “Harmonic detection for
power grids using adaptive variational mode decomposition,” Energies,
vol. 12, no. 2, p. 232, 2019.

[20] Y. Zhang, “A better autoencoder for image: Convolutional autoencoder,”
in ICONIP17-DCEC, 2018.

[21] P. Gavrikov, “visualkeras,” https://github.com/paulgavrikov/visualkeras,
2020.

[22] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[23] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound
approaches to counteract power-analysis attacks,” in CRYPTO, ser.
LNCS, M. J. Wiener, Ed., vol. 1666. Springer, 1999, pp. 398–412.

https://github.com/paulgavrikov/visualkeras

	Introduction
	Preliminaries and Related Work
	Detecting Abnormal Electricity Consumption
	Data Characteristics and Context
	Data Processing
	Local Learning
	Global Learning
	Anomaly detection
	Privacy-Preserving Aggregation using Shares

	Benchmark and Discussion
	Training and Evaluation Data
	Local Results
	Global Results

	Conclusions
	References

