SECURING THE FUTURE: POST-QUANTUM CRYPTOGRAPHY STANDARD DEVELOPMENT AND CHALLENGES

Joppe Bos, Senior Principal Cryptographer Competence Center Crypto & Security SEPTEMBER 2022

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V.

CONTEMPORARY CRYPTOGRAPHY TLS-ECDHE-RSA-AES128-GCM-SHA256

QUANTUM COMPUTING

Computer systems and algorithms based on principles of quantum mechanics

- Superposition
- Interference
- Entanglement
- A classical bit can only be in the state corresponding to 0 or the state corresponding to 1
- A qubit may be in a superposition of both states
 → when measured it is always 0 or 1

Shor's quantum algorithm (1994).

Polynomial time algorithm to factor integers. **Impact**. If we assume the availability of a large quantum computer, then one can break RSA instantly.

State-of-the-art.
IBM's 127-Qubit Quantum Processor
Break RSA-3072:
~10.000 qubits are needed

Quantum Potential To destroy Security As We know it

Confidential email messages, private documents, and financial transactions

Secure today but may be compromised in the future, even if recorded & encrypted

Firmware update mechanisms in vehicles

May be circumvented and allow dangerous modifications

Critical industrial and public service infrastructure (for healthcare, utilities, and transportation using internet and virtual private networks) Could become exposed - potentially destabilize cities

Audit trails and digitally signed documents associated with safety (auto certification and pharmaceutical authorizations) Could be retrospectively modified

The integrity of blockchains

Could be retrospectively compromised - could include fraudulent manipulation of ledger and cryptocurrency transactions

POST-QUANTUM CRYPTO <u>STANDARDS</u> ARE COMING IT DOESN'T MATTER IF YOU BELIEVE IN QUANTUM COMPUTERS OR NOT

POST-QUANTUM CRYPTO STANDARDIZATION

Practice good hygiene and safety measures during an of a hurricane evacuation or impact. Keep family considerations in mind and don't be afriad to contact leadership for guidance.

STAY SAFE

POST-QUANTUM CRYPTO IS ON THE HORIZON

NP

IMPACT PQC ON OUR ECO-SYSTEM

Data collection, processing and decisions at the edge Devices securely connected to the cloud

No Silver Bullet

If a crypto scheme was better, we would have standardized this already

Cryptographic Keys

Orders of magnitude larger. In the final: up to 1.3MB Winners: up to 4.8KB (ECC: 32 bytes, RSA: 384 bytes)

Performance

Varies: some faster some significantly slower. SHA-3 is a dominating component (~80%)

Memory

Orders of magnitude more: up 100KB memory of RAM when executing

Bandwidth & Power

Larger signatures (up to 4.6KB) \rightarrow more bandwidth required \rightarrow increase in power usage

KEY-EXCHANGE IMPACT

Kyber **co-designed by NXP** with IBM, ARM and academic partners

- Measurements on Cortex-M4
 @ 168MHz from pqm4 framework
- Functional implementation only (not hardened)
- 70 ~ 80 percent of run-time in SHA-3

DIGITAL SIGNATURE IMPACT

6

ditte

9

USE CASE STUDY IMPACT ASSESSMENT: \$32G

NANO

NO

A Real Property

- Lot of

S32G2 VEHICLE NETWORK PROCESSOR - A NEW TYPE OF AUTOMOTIVE PROCESSOR

OUR TARGET PLATFORM: S32G274A

3 Lockstep Arm[®] Cortex[®]-M7 Microcontrollers

4 Cluster Lockstep Cortex-A53 Microprocessors

8 MB of system RAM

POST-QUANTUM CRYPTO

Can we enable PQC secure boot?

Integrate PQC secure signature verification

www.nxp.com/S32G2

BENCHMARKS FOR AUTHENTICATION OF FW SIGNATURE ON THE S32G2

	Alg.	Size		Performance (ms)			
				1 KB		128 KB	
		PK	Sig.	Inst.	Boot	Inst.	Boot
	RSA 4K	512	512	2.6	0.0	2.7	0.2
	ECDSA-p256	64	64	6.2	0.0	6.4	0.2
Þ	Dilithium-3	1952	3293	16.7	0.0	16.9	0.2

- Demonstrator only, further optimizations are possible (such as hardware accelerated SHA-3)
- Signature verification only required once for installation!
- During boot the signature verification can be replaced with a check of the Reference Proof of Authenticity

CUSTOMER-FIRST APPROACH FOR POST-QUANTUM CRYPTOGRAPHY

- Customer support for migration
- Continued innovation for high-assurance implementations (resistance against sidechannel and fault attacks) and dedicated PQC hardware
- Crypto agility with seamless upgradability of our existing devices

For more details check out nxp.com/pqc

SECURE CONNECTIONS FOR A SMARTER WORLD

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V.