
This article is the final version submitted by the author to Springer-Verlag in August 2014.
The version published by Springer-Verlag in the Journal of Cryptographic Engineering is available at
http://dx.doi.org/10.1007/s13389-014-0084-8.

Constant Time Modular Inversion

Joppe W. Bos

Abstract Simple power analysis is a common tech-
nique to attack software implementations, especially in
the realm of public-key cryptography. An effective coun-
termeasure to protect an implementation is to ensure
constant (worst-case) runtime. In this paper we show
how to modify an algorithm by Kaliski to compute the
Montgomery inverse such that it can compute both the
classical and Montgomery modular inverse in constant
time. We demonstrate the effectiveness by comparing
it to the approach based on Fermat’s little theorem as
used in the current simple power analysis resistant im-
plementations in cryptography. Our implementation on
the popular 32-bit ARM platform highlights the prac-
tical benefits of this algorithm.

1 Introduction

In recent years it has become essential to guard (soft-
ware) implementations against physical attacks. This
research area, related to side-channel resistance of cryp-
tographic primitives, started with the introduction of
simple power analysis techniques [14] which measure
physical information of the device on which the im-
plementation is running. This enables an attacker to
obtain the secret material from a (possibly small) num-
ber of observations when some of the characteristics of
the implementation depend on the input. An important
counter-measure against such attacks is to ensure that
the implementation has constant run-time: i.e. the exe-
cution time of the implementation does not depend on
the input. In practice this is usually realized by elimi-
nating all code that contains data-dependent branches.

Part of this work was performed while working for Microsoft Re-
search

NXP Semiconductors, Leuven, Belgium

A popular approach to realize public-key cryptogra-
phy is based on the algebraic structure of elliptic curves
over finite fields. This is known as elliptic curve cryptog-
raphy [13,17] which continues to enjoy increasing pop-
ularity since its invention in the mid 1980s. The attrac-
tiveness of small key-sizes [15] has placed this public-
key primitive as the preferred alternative to RSA [22].
Standardized public-key algorithms (e.g. [28]) based on
elliptic curves, defined over prime fields Fp with p > 3,
involve computing a scalar multiple of a point on an
elliptic curve. Such a scalar multiplication can be com-
puted by calculating a sequence of affine group opera-
tions, each of which can be implemented by a number of
multiplications and an inversion modulo p. In order to
speed up this computation, projective coordinates are
used in practice. This has the advantage of trading the
computationally expensive modular inversion operation
in each group operation for modular multiplications.
Typically, at the end of the scalar multiplication, con-
version from projective to affine coordinates is realized
at the cost of a single modular inversion.

Another application of elliptic curves is to instan-
tiate a powerful cryptographic primitive: the bilinear
pairing [10,23,3]. Just as in the setting of elliptic curve
cryptography, pairing-based protocols typically compute
(at least) one modular inversion per pairing computa-
tion.

In [19] it is shown that the projective representa-
tion of an elliptic curve point can reveal information
about the secret. Hence, the modular inversion com-
putation, required to convert from projective to affine
coordinates, depends on data which can reveal the se-
cret and therefore can leak information. This means
that the time to compute the modular inversion should
be independent of the number to be inverted (but may
depend on the prime modulus).

2 Joppe W. Bos

Recent constant time performance implementations
of curve based cryptography realize this inversion mod-
ulo a prime p in constant time using Fermat’s little
theorem. When an inversion of an integer a is required
one can compute the exponentiation ap−2 ≡ a−1 mod p.
This is done in constant time using addition chains [25]
with the help of the square-and-multiply algorithm. For
instance, inversions modulo the prime 2255 − 19 take
seven percent of the entire run-time of the scalar mul-
tiplication and can be computed using 254 modular
squarings and 11 modular multiplications [2]. The same
approach, and similar performance numbers, are re-
ported in recent curve based approaches which protect
themselves against simple power analysis and run in
constant time [20,16,4,8,5].

In this paper we propose a different approach to
compute modular inversions in constant time. We mod-
ify the (non-constant time) approach from [11], which is
in part based on [9], which computes the Montgomery
inverse based on the extended binary greatest common
divisor algorithm (see [26] and [12, Ex. 39, Sec. 4.5.2]).
We show how to use this algorithm to compute both
regular modular inversions as well as computing inver-
sions when using Montgomery arithmetic [18]. We show
that for moduli which do not have a “special” shape this
approach is faster than computing the modular inverse
using Fermat’s little theorem. Our target platform is
the ARM: a popular 32-bit platform which can be found
on many modern mobile and embedded devices.

This paper is organized as follows. In Section 2 we
recall the necessary background on Montgomery arith-
metic. Section 3 describes the “almost” Montgomery
inversion method by Kaliski. We outline the modified
algorithm which runs in constant time in Section 4.
Section 5 discusses implementations of constant time
modular inversions on the ARM platform and Section 6
concludes the paper.

2 Montgomery Arithmetic

The Montgomery modular multiplication method [18]
transforms each of the operands into a Montgomery
residue and carries out the computation by replacing
the conventional modular multiplications by Montgomery
multiplications. Due to the overhead of changing repre-
sentations, Montgomery arithmetic performs best when
used to replace a sequence of modular multiplications,
since the overhead is amortized. This is suitable to
speed up, for example, modular exponentiations which
can be decomposed as a sequence of several modular
multiplications.

The idea behind Montgomery multiplication is to re-
place the expensive division operations required when

computing the modular reduction by the much cheaper
shift operations (division by powers of two) on com-
puter architectures. Let w denote the word size in bits.
We write integers in a radix-2w system, where typical
values of w are w = 32 or w = 64 to match the word-
size of modern computer platforms. Letm be an n-word
odd modulus such that 2w(n−1) ≤ m < 2wn. The Mont-
gomery radix 2wn is a constant such that it is co-prime
tom (which is why we requirem to be odd). The Mont-
gomery residue of an integer a ∈ Z/mZ is defined as
ã = a · 2wn mod m. The Montgomery multiplication of
two residues is defined as M(ã, b̃) = ã · b̃ · 2−wn mod m.
Residues may be added and subtracted using regular
modular algorithms since

ã± b̃ ≡ (a · 2wn)± (b · 2wn) ≡ (a± b) · 2wn (mod m).

The Montgomery product c̃ = M(ã, b̃) can be com-
puted in two steps. First calculate the integer product
d = ãb̃. Next perform the Montgomery reduction with
the help of a w-bit precomputed value µ = −m−1 mod

2w: compute d
2wn mod m by replacing n times in suc-

cession d by

d+ ((dµ) mod 2w)m

2w
,

then c̃ = d − m if d ≥ m and c̃ = d otherwise. If
0 ≤ ã, b̃ < m, then the same bounds hold for c̃. A
common technique to avoid this conditional subtraction
in the Montgomery multiplication algorithm, which is
computed to ensure the result is properly reduced such
that it can be used as input to the algorithm again, is
to use a redundant representation. When the modulus
m is chosen such that 4m < 2wn, then the inputs and
output are represented as elements of Z/2mZ instead
of Z/mZ. It is easily shown that throughout the se-
ries of modular multiplications, outputs from multipli-
cations can be reused as inputs, and these values remain
bounded without the need to compute this conditional
subtraction [29].

Computing the Montgomery inverse a−1 · 2wn mod

m of a Montgomery residue ã = a · 2wn mod m can
be done by computing a modular inversion and a mod-
ular multiplication. First compute ã−1 ≡ a−1 · 2−wn

(mod m) and subsequently correct this value by mul-
tiplying by 22wn or 23wn modulo m using regular or
Montgomery multiplication, respectively. The compu-
tation of the Montgomery inverse is studied in [11,24],
while a modified version of this algorithm is shown to
be suitable for computation on platforms which support
the 4-way single instruction, multiple data paradigm [6].

Constant Time Modular Inversion 3

Algorithm 1 Compute the “almost” modular inverse
b−1 · 2k mod a [11].
Input: a, b ∈ Z>0 with gcd(a, b) = 1 and 0 ≤ b < a.

Output:
{
(b−1 · 2k mod a, k) where
dlog2(a)e ≤ k ≤ 2dlog2(a)e.

u← a, v ← b, r ← 0, s← 1, k ← 0
while v 6= 1 do

if u ≡ 0 (mod 2) then
u← u/2, s← 2 · s

else if v ≡ 0 (mod 2) then
v ← v/2, r ← 2 · r

else if u > v then
u← (u− v)/2, r ← r + s, s← 2 · s

else
v ← (v − u)/2, s← r + s, r ← 2 · r

end if
k ← k + 1

end while
return (s, k)

3 The Almost Montgomery Inverse

An “almost” modular inversion algorithm is introduced
by Kaliski in [11] in the setting of computing the Mont-
gomery inverse. This approach is outlined in Algorithm 1
to compute b−1 ·2k mod a for co-prime positive integers
a and b where dlog2(a)e ≤ k ≤ 2dlog2(a)e. The algo-
rithm has the following invariants [11]: if a > b > 0,
then

1 ≤ s ≤ a, 1 ≤ u ≤ a, 0 ≤ v ≤ b, 0 ≤ r < 2a.

This algorithms is called the “almost” modular inversion
algorithm because it outputs the inverse multiplied with
this power of two. The factor 2k mod a can be removed
by table look-up of the value 2−k mod a and performing
a modular multiplication (or precomputing the appro-
priate value when using Montgomery multiplication as
outlined in Section 2). This can also be computed by
applying

si =


si−1

2
, if si−1 is even,

si−1 + a

2
, if si−1 is odd,

k times (starting at i = 1) and initializing s0 = b−1 ·
2k mod a (the return value of Algorithm 1). This en-
sures that all values in the numerator are even (since a
is odd).

Analyzing the worst-case number of iterations of the
while-loop in Algorithm 1 is not difficult. Every itera-
tion removes at least a factor of two, from either u or
v, and the maximum number of iterations is therefore
2dlog2(a)e (see [11]). Similarly, the minimum number of
iterations is dlog2(a)e (the bit-length of the modulus a).
This explains the bounds on the exponent k when the
algorithm terminates and the size of the lookup table

for the removal of the power of two at the end of the
algorithm.

Algorithm 2 The constant time version of the “almost”
modular inverse b−1 · 2k mod a algorithm. Comments
showing which branch from Algorithm 1 are being com-
puted are displayed after a ’#’.
Input: a, b ∈ Z>0 with gcd(a, b) = 1 and 0 ≤ b < a.

Output:
{
(b−1 · 2k mod a, k) where
dlog2(a)e ≤ k ≤ 2dlog2(a)e.

u← a, r ← 0, v ← b, s← 1, k← 0
for i = 1 to 2dlog2(a)e do

uv< ← sub(u′, u, v)
uv= ← equal(u′, 0)

d← 0− uv= # d =

{
0 if u 6= v

2w − 1 if u = v

lshift1(s̃, s)
add(rs, r, s)
rshift1(ũ, u)
m1 ← d ∨ (0− (u0 ∧ 1))
m2 ← bitflip(m1)
select(u, ũ,m2, u,m1)
select(s, s̃,m2, s,m1)


if u ≡ 0 (mod 2)
u← u/2
s← 2 · s

lshift1(r̃, r)
S← (d ∨ bitflip(m1))
m3 ← S ∨ 0− (v0 ∧ 1)
m4 ← bitflip(m3)
rshift1(ṽ, v)
select(v, ṽ,m4, v,m3)
select(r, r̃,m4, r,m3)


else if v ≡ 0 (mod 2)
v ← v/2
r ← 2 · r

S← S ∨ bitflip(m3)
m5 ← S ∨ (0− uv<)
m6 ← bitflip(m5)
rshift1(u′, u′)
select(u, u′,m6, u,m5)
select(r, rs,m6, r,m5)
select(s, s̃,m6, s,m5)


else if u > v
u← (u− v)/2
r ← r + s

s← 2 · s

S← S ∨ bitflip(m5)
m7 ← bitflip(S)
sub(ṽ, v, u)
rshift1(ṽ, ṽ)
select(v, ṽ,m7, v,S)
select(s, rs,m7, s,S)
select(r, r̃,m7, r,S)


else
v ← (v − u)/2
s← r + s

r ← 2 · r

Update or keep the current exponent value k
k← ((k ∧ d) ∨ ((k+ 1) ∧ bitflip(d)))

end for
return (s,k)

4 Constant Time Modular Inversion

The execution time of Algorithm 1 depends on both
the value of a and b. The number of iterations of the
while-loop as well as the powers of two that need to be
removed at the end of the algorithm differ significantly

4 Joppe W. Bos

for different inputs. In order to turn Algorithm 1 into
a constant time algorithm, for a given wn-bit modulus
m, we have to ensure

1. that a single iteration is always computed in the
same amount of time. This means computing all
four different branches from Algorithm 1 and select-
ing the correct values in constant time. This ensures
that the run-time of a single iteration is independent
of the branch taken but means the computation time
is increased to (at most) the time to compute the
sum of all four branches.

2. that the algorithm always computes the same num-
ber of (constant time) iterations. This implies that
the computation of the worst-case number of 2wn
iterations is always required. This can be realized
by detecting when Algorithm 1 would have termi-
nated (when we reach v = 1). Depending on this
condition we create a bit-mask and select either the
input value to this iteration (when v = 1) or the
values computed on by the constant time iteration
(when v 6= 1).

Let us first set the notation we use throughout this
section. We distinguish between w-bit integers (denoted
in bold) which are typically used in masking opera-
tions and full wn-bit integers (denoted in regular font).
We use the following w-bit masks: d, S, m1, m2, m3,
m4, m5, m6, m7, which contain either all-zero bits
(the integer value 0) or all-one bits (the integer value
2w−1). We write the wn-bit integers in a radix-2w sys-

tem: u =

n−1∑
i=0

ui2
wi. In the algorithm we include some

optimizations which can be applied on the lower (bit)
level: e.g. u mod 2 = u0 ∧ 1. We use the following (con-
stant time) functions where the (partial) output of the
functions is always written as the first parameter.

– The selection function is denoted by select(c, a,m1, b,m2)

and computed as

c←


b if m1 = 0 and m2 = 2w − 1,

a if m1 = 2w − 1 and m2 = 0,

undefined otherwise.

That is, depending on the value of two bit-masksm1

and m2 the value a or b is assigned to c. In practice
this functionality can be implemented in constant
time in different ways. For instance, select(c, a,m1, b,m2)

can be computed as

c← ((a ∧m1) ∨ (b ∧m2))

using two and instructions and a single or instruc-
tion per w-bit limb.

– The subtraction function is denoted by sub(z, x, y)
(and addition as add(z, x, y)) and computes z ←
x − y and return the borrow: i.e. one if x < y and
zero otherwise (while addition computes z ← x+y).

– The equality function is denoted by equal(x, y) and
returns one if x = y and zero otherwise. This can
be computed in constant time for wn-bit integers x
and y using

r ← (x0 = y0)

for i = 1 to n− 1 do
r ← r ∧ (xi = yi)

end for
return r

– The shift-by-one functions are denoted by lshift1(z, x)
and rshift1(z, x) for shifting x one bit position to
the left or right respectively (shifting in a zero) and
storing the result in z.

– The bitflip function is denoted by bitflip(x) simply
flips all of the bits in x and returns the result.

Algorithm 2 outlines the constant time version of
Algorithm 1. All functions operate on integer values of
fixed length (either w- or wn-bit), this is to ensure con-
stant running time. In a non-constant time implemen-
tation one can use the fact that r and s start small (use
only a single computer word) and can be computed on
with more efficient arithmetic routines. Note that all of
the arithmetic operations performed on the w-bit masks
work with a single computer word and are independent
of the size of the modulus. We indicated the computa-
tion of the different branches from Algorithm 1 for the
ease of readability in Algorithm 2 (text after the ’#’
character should be regarded as comment).

The bit-mask d in Algorithm 2 indicates if the non-
constant time algorithm (Algorithm 1) would have ter-
minated since

d =

{
0 if u 6= v

2w − 1 if u = v

Hence, d contains w ones if the non-constant time al-
gorithm would have terminated or w zeros if not. This
bit-mask d is used as one of the main control param-
eters for the values to be selected. If d is set to all
ones, then the values from the beginning of the itera-
tion are selected as the desired result at the end of the
iteration, so no modifications are made. However, all
of the computations are performed to ensure the con-
stant run-time. The four pairs of bit-masks {m1,m2},
{m3,m4}, {m5,m6}, and {S,m7} are used to differen-
tiate between the four different branches and select the
correct result.

Note that some computations can be saved. For in-
stance, the value r+ s (which is either stored in r or s)

Constant Time Modular Inversion 5

has to be computed once only. The same holds for the
shifting operations, multiplying or dividing by two, but
there is a trade-off between reducing these arithmetic
costs and the number of calls to the select function that
need to be performed. These optimizations have been
included in Algorithm 2.

5 Implementation Results

We have implemented the constant time modular in-
version algorithm as described in Algorithm 2 for the
popular 32-bit ARM architecture which can be found in
many mobile and embedded devices. In this section we
first determine the speed of constant time implemen-
tations based on Fermat’s little theorem and next we
compare this to the performance of the constant time
almost Montgomery inverse algorithm.

5.1 Fermat’s Little Theorem

The current state-of-the-art proposals and software im-
plementations of methods and protocols which are based
on (elliptic) curve cryptography all use primes of a spe-
cial form to enhance the practical performance of the
modular arithmetic [2,16,4,8,5]. In the context of com-
puting bilinear pairings the latest cryptographic imple-
mentations do not use special primes but have other de-
sign choices which make these efficient for software im-
plementations. Also in this setting it is not uncommon
to implement the various arithmetic in constant time
(cf. [20]). The standard way of computing the modular
inversion in constant time, and used in all the afore-
mentioned implementation projects, is based on Fer-
mat’s little theorem. To compute the modular inverse
x−1 mod m, for a positive prime numberm, one can use
Fermat’s little theorem which states that xm − x is an
integer multiple of m. Hence, one can use the identity

x−1 ≡ xm−2 mod m.

Using the basic square-and-multiply algorithm for mod-
ular exponentiation, this requires, for a random wn-
bit prime m, roughly wn modular squarings and wn/2
modular multiplications.

In the setting of computing an inverse modulo a spe-
cial prime these numbers can be significantly improved
as illustrated in the following example.

Example 1 Computing the constant time inversion mod-
ulo the prime 2255 − 19 can be realized using only 254
modular squarings and 11 modular multiplications as
proposed by Daniel J. Bernstein in [2]. One can com-
pute

a = z−1 ≡ z2
255−21 mod 2255 − 19

using the following steps (where the value after the #
denotes the value of the exponent).

z2 ← z2 # 2

z9 ← z2
2

2 · z # 9

z11 ← z9 · z2 # 11

t1 ← z211 · z9 # 25 − 20

t2 ← t2
5

1 · t1 # 210 − 20

t3 ← t2
10

2 · t2 # 220 − 20

t4 ← (t2
20

3 · t3)2
10 · t2 # 250 − 20

t5 ← t2
50

4 · t4 # 2100 − 20

a ← ((t2
100

5 · t5)2
50 · t4)2

5 · z11 # 2255 − 21

5.2 Performance Comparison

We have implemented the algorithm outlined in Algo-
rithm 2 for the 32-bit ARM architecture. Given an inte-
ger b and an wn-bit prime modulus a, the algorithm re-
turns b−1 ·2k mod a after exactly 2wn iterations. These
powers of two can be removed one at a time as outlined
in Section 3. This can be time-consuming when it needs
to be computed in constant time. We choose to remove
this value using a single modular multiplication from a
precomputed table of wn elements of wn-bit each. The
difficulty is not to perform this modular multiplication
in constant time but to extract the correct value from
this table such that we do not leak information. At-
tacks that use this type of information are known as
cache-attacks [21,27], which are able to deduce infor-
mation from the memory access pattern. In order to
guard against such attacks we access every element in
the table and select (mask) the correct value. This re-
sults only in a insignificant overhead compared to the
overall modular inversion computation.

Our benchmark platform is the BeagleBoard-xM [1],
a low-power open-source hardware single-board com-
puter, which contains the TI DM3730 system on chip
(SoC) equipped with a 1.0 GHz Cortex-A8 ARM core.
We implemented the various routines using the C pro-
gramming language with the help of intrinsics.

In order to investigate the performance difference
between the classical and constant-time version of the
almost Montgomery inversion routine we benchmarked
both routines for various modulus sizes. These results
are summarized in Table 1. Note that we benchmarked
moduli of wn− 2 bits to accommodate the usage of the
subtraction less Montgomery multiplication (see Sec-
tion 2) which runs inherently in constant-time and is
more efficient in practice (this are the typical bit lengths
used in bilinear pairing record setting software imple-
mentations).

The average run time of the binary version of the
(extended) greatest common divisor algorithm is stud-

6 Joppe W. Bos

Table 1 The number of 103 cycles required to compute the modular inverse using the regular (non constant time) method (Al-
gorithm 1) and the constant time method (Algorithm 2) using a b-bit modulus. The estimated and real number of iterations for
Algorithm 1 are given as well. The number of iterations for the constant time algorithm is always 2b.

bitsize # 103 cycles # 103 cycles # iterations # iterations
b constant-time regular practice theory

254 486 57 358.1 358.6
446 1472 182 627.9 629.7
638 3028 389 898.7 900.8

ied in [12] and based on the analysis from [7]. This
analysis shows that Algorithm 1 has an estimated aver-
age number of iterations of 1.41194wn. These estimates
and the real values, obtained after averaging 10 runs of
1000 trials, are included in Table 1 as well.

Based on the increased number of iterations (from
1.41194wn to 2wn) and the increased cost of the itera-
tion (we have to compute all four branches every time)
one might expect a slow-down of the constant-time im-
plementation of a factor 5.7 compared to the classical
algorithm. As Table 1 shows this value is consistently
higher and around a factor eight. This can be explained
due to the fact that the selection of the correct values,
using bitmasks, is not for free and incurs an additional
performance penalty for each of the four branches.

Table 2 summarizes the performance cost on our
benchmark platform for generic b-bit prime moduli p.
We assume that computing the exponentiation with p−
2 is computed using the straight-forward multiply-and-
square algorithm which requires approximately b mod-
ular squarings and b/2modular multiplications. Table 2
highlights the performance increase of Algorithm 2 over
an approach based on Fermat’s little theorem. The per-
formance gain is more noticeable for larger moduli.

Note, however, that we do not expect this approach
to be (significantly) faster compared to primes of a spe-
cial shape. Let’s consider the prime 2255 − 19 again as
an example, the 254 modular squarings and 11 mod-
ular multiplications can be computed in 406 thousand
cycles using Montgomery arithmetic. This already out-
performs Algorithm 2 but we expect that an implemen-
tation which takes advantage of the special shape of
this prime can outperform Montgomery arithmetic by
up to a factor two. It remains an interesting case study

Table 2 Performance numbers in 103 cycles for inversion mod-
ulo a generic (not of a special form) b-bit prime modulus. For the
methods labeled “Fermat” we assume that b modular squarings
and b/2 modular multiplications are used.

b Fermat Algorithm 2
254 584 486

446 2916 1472

638 8083 3028

to compare Algorithm 2 to methods based on Fermat’s
little theorem in the setting of much larger primes of a
special shape (primes which are over 512 bits).

6 Conclusions and Future Work

We have shown how to modify an algorithm by Kaliski [11]
to compute the classical modular inversion as well as the
Montgomery inversion in constant time. This has ap-
plications in public-key cryptography, where constant
running time is an important counter-measure against
simple power analysis attacks. We have shown that on
the popular ARM architecture this approach outper-
forms the current approaches which are based on Fer-
mat’s little theorem when “generic” prime moduli are
used. In the setting where primes of special shape can
be used the modular inversion approach based on Fer-
mat’s little theorem might be more efficient.

We hope that the results presented in this paper
inspire other people to investigate different variants of
the binary GCD algorithm to see if they can be turned
into more efficient versions than the one presented here.

References

1. Beagle Board. BeagleBoard-xM System Reference Man-
ual. http://beagleboard.org/static/BBxMSRM_latest.pdf,
2013.

2. Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed
records. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and
Tal Malkin, editors, Public Key Cryptography – PKC 2006,
volume 3958 of Lecture Notes in Computer Science, pages
207–228. Springer, Heidelberg, 2006.

3. Dan Boneh and Matthew K. Franklin. Identity-based encryp-
tion from the Weil pairing. In Joe Kilian, editor, Advances in
Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes
in Computer Science, pages 213–229. Springer, 2001.

4. Joppe W. Bos, Craig Costello, Huseyin Hisil, and Kristin
Lauter. Fast cryptography in genus 2. In Thomas Johansson
and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of Lecture Notes in Computer Science, pages 194–210.
Springer Berlin Heidelberg, 2013.

5. Joppe W. Bos, Craig Costello, Huseyin Hisil, and Kristin
Lauter. High-performance scalar multiplication using 8-
dimensional GLV/GLS decomposition. In Guido Bertoni and
Jean-Sébastien Coron, editors, Cryptographic Hardware and
Embedded Systems – CHES 2013, volume 8086 of Lecture

Constant Time Modular Inversion 7

Notes in Computer Science, pages 331–348. Springer, Hei-
delberg, 2013.

6. Joppe W. Bos, Marcelo E. Kaihara, Thorsten Kleinjung, Ar-
jen K. Lenstra, and Peter L. Montgomery. Solving a 112-
bit prime elliptic curve discrete logarithm problem on game
consoles using sloppy reduction. International Journal of
Applied Cryptography, 2(3):212–228, 2012.

7. Richard P. Brent. Analysis of the binary Euclidean algo-
rithm. In J. F. Traub, editor, New Directions and Recent
Results in Algorithms and Complexity, pages 321–355. Aca-
demic Press, 1976.

8. Armando Faz-Hernandez, Patrick Longa, and Ana H.
Sanchez. Efficient and secure algorithms for GLV-based
scalar multiplication and their implementation on GLV-GLS
curves. Cryptology ePrint Archive, Report 2013/158, 2013.
http://eprint.iacr.org/.

9. Alain Guyot. OCAPI: architecture of a VLSI coprocessor for
the GCD and the extended GCD of large numbers. In IEEE
Symposium on Computer Arithmetic, pages 226–231. IEEE,
1991.

10. Antoine Joux. A one round protocol for tripartite Diffie-
Hellman. Journal of Cryptology, 17(4):263–276, 2004.

11. Burton S. Kaliski Jr. The Montgomery inverse and its appli-
cations. IEEE Transactions on Computers, 44(8):1064–1065,
1995.

12. Donald E. Knuth. Seminumerical Algorithms. The Art
of Computer Programming. Addison-Wesley, Reading, Mas-
sachusetts, USA, 3rd edition, 1997.

13. Neal Koblitz. Elliptic curve cryptosystems. Mathematics of
Computation, 48(177):203–209, 1987.

14. Paul C. Kocher. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In Neal Koblitz, edi-
tor, Crypto 1996, volume 1109 of Lecture Notes in Computer
Science, pages 104–113. Springer, Heidelberg, 1996.

15. Arjen K. Lenstra and Eric R. Verheul. Selecting crypto-
graphic key sizes. Journal of Cryptology, 14(4):255–293,
2001.

16. Patrick Longa and Francesco Sica. Four-dimensional Gallant-
Lambert-Vanstone scalar multiplication. In Xiaoyun Wang
and Kazue Sako, editors, ASIACRYPT, volume 7658 of Lec-
ture Notes in Computer Science, pages 718–739. Springer,
2012.

17. Victor S. Miller. Use of elliptic curves in cryptography. In
Hugh C. Williams, editor, Crypto 1985, volume 218 of Lec-
ture Notes in Computer Science, pages 417–426. Springer,
Heidelberg, 1986.

18. Peter L. Montgomery. Modular multiplication without trial
division. Mathematics of Computation, 44(170):519–521,
April 1985.

19. David Naccache, Nigel P. Smart, and Jacques Stern. Pro-
jective coordinates leak. In Christian Cachin and Jan Ca-
menisch, editors, EUROCRYPT, volume 3027 of Lecture
Notes in Computer Science, pages 257–267. Springer, 2004.

20. Michael Naehrig, Ruben Niederhagen, and Peter Schwabe.
New software speed records for cryptographic pairings. In
Michel Abdalla and Paulo S.L.M. Barreto, editors, Progress
in Cryptology – LATINCRYPT 2010, volume 6212 of Lecture
Notes in Computer Science, pages 109–123. Springer-Verlag
Berlin Heidelberg, 2010.

21. Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: The case of AES. In David
Pointcheval, editor, Topics in Cryptology - CT-RSA 2006,
The Cryptographers’ Track at the RSA Conference 2006,
volume 3860 of Lecture Notes in Computer Science, pages
1–20. Springer, 2006.

22. R. L. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21:120–126, 1978.

23. R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based
on pairing. In The 2000 Symposium on Cryptography and
Information Security, Okinawa, Japan, pages 135–148, 2000.

24. Erkay Savas and Ç. K. Koç. The montgomery modu-
lar inverse-revisited. IEEE Transactions on Computers,
49(7):763–766, 2000.

25. A. Scholz. Aufgabe 253. Jahresbericht der deutschen
Mathematiker-Vereingung, 47:41–42, 1937.

26. Josef Stein. Computational problems associated with Racah
algebra. Journal of Computational Physics, 1(3):397–405,
1967.

27. Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient
cache attacks on AES, and countermeasures. Journal of
Cryptology, 23(1):37–71, 2010.

28. U.S. Department of Commerce/National Institute of Stan-
dards and Technology. Digital Signature Standard (DSS).
FIPS-186-3, 2009. http://csrc.nist.gov/publications/
fips/fips186-3/fips_186-3.pdf.

29. Colin D. Walter. Montgomery exponentiation needs no final
subtractions. Electronics Letters, 35(21):1831–1832, 1999.

